login
A060716
Singular n X n matrices over GF(4).
2
1, 76, 80704, 1333866496, 350423140532224, 1470575268235571101696, 98701955014599602193609785344, 105983992373769699116787162453121171456, 1820806479557691387021584007269972378727328251904
OFFSET
1,2
LINKS
FORMULA
For n >= 1, a(n) = 4^(n^2) - A053291(n) = 4^(n^2) - (4^n - 1)*(4^n - 4)*...*(4^n - 4^(n-1)).
MAPLE
for n from 1 to 15 do printf(`%d, `, 4^(n^2) - product(4^n-4^j, j=0..n-1)) od:
PROG
(PARI) a(n)={4^(n^2) - prod(j=0, n - 1, 4^n - 4^j)} \\ Harry J. Smith, Jul 10 2009
CROSSREFS
Cf. A053291.
Sequence in context: A241878 A033521 A222739 * A116255 A136609 A116246
KEYWORD
nonn
AUTHOR
Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001
EXTENSIONS
More terms from James A. Sellers, Apr 24 2001
STATUS
approved