login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060722
a(n) = 3^(n^2).
13
1, 3, 81, 19683, 43046721, 847288609443, 150094635296999121, 239299329230617529590083, 3433683820292512484657849089281, 443426488243037769948249630619149892803
OFFSET
0,2
COMMENTS
The number of n X n {-1,0,1}-matrices (the same as the number of n X n matrices over GF(3) ).
LINKS
Robert Corless and Steven Thornton, The Bohemian Eigenvalue Project, 2017 poster.
Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
FORMULA
a(n) = [x^n] 1/(1 - 3^n*x). - Ilya Gutkovskiy, Oct 10 2017
From Geoffrey Critzer, Dec 02 2024: (Start)
a(n) = Sum_{k=0..n} A378666(n,k)*A053764(k)*A053290(n-k).
Sum_{n>=0} a(n)x^n/B(n) = f(x)*g(x) where f(x) = Sum_{n>=0} A053290(n)x^n/B(n) and g(x) = Sum_{n>=0} A053764(n)x^n/B(n) and B(n) = A053290(n)/2^n. (End)
MAPLE
for n from 1 to 15 do printf(`%d, `, 3^(n^2)) od:
MATHEMATICA
Array[3^(#^2) &, 9] (* Michael De Vlieger, Jul 12 2018 *)
PROG
(PARI) { for (n=0, 45, write("b060722.txt", n, " ", 3^(n^2)); ) } \\ Harry J. Smith, Jul 10 2009
(PARI) a(n) = 3^(n^2); \\ Joerg Arndt, Feb 23 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001
EXTENSIONS
More terms from James A. Sellers, Apr 24 2001
a(0) = 1 added by N. J. A. Sloane, Nov 23 2007
STATUS
approved