OFFSET
0,4
COMMENTS
It can be proved that r(n) is an integer (i.e. a(n) = 1) if and only if n is one of 0, 1, 2, 4, 8.
FORMULA
r(n) = (((1/2)*(sqrt(3) + 1))^n - ((1/2)*(sqrt(3) - 1))^n * cos(Pi*n))/sqrt(3). - Peter Luschny, Jun 02 2018
EXAMPLE
The sequence r(n) begins 0, 1, 1, 3/2, 2, 11/4, 15/4, 41/8, 7, 153/16, 209/16, 571/32, 363/16, 2023/64, 2749/64, 7521/128, 5135/64, ...
MATHEMATICA
Denominator[RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]/2}, a, {n, 50}]] (* Harvey P. Dale, Mar 07 2016 *)
Table[Denominator[Simplify[((1/2(1 + Sqrt[3]))^x - (1/2(Sqrt[3] - 1))^x Cos[Pi x])/ Sqrt[3]]], {x, 0, 43}] (* Peter Luschny, Jun 02 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001
EXTENSIONS
More terms from Vladeta Jovovic, Apr 24 2001
STATUS
approved