Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:45:03
%S 1,3,9,29,103,405,1753,8279,42293,231949,1357139,8427193,55288873,
%T 381798643,2765917089,20960284293,165729739607,1364153612317,
%U 11665484410113,103448316470743,949739632313501,9013431476894645,88304011710168691
%N a(0) = 1; a(n+1) = a(n) + Sum_{i=0..n} binomial(n,i)*(a(i)+1).
%H Michael De Vlieger, <a href="/A060719/b060719.txt">Table of n, a(n) for n = 0..575</a>
%H A. R. Ashrafi, L. Ghanbari Maman, K. Kavousi, F. Koorepazan Moftakhar, <a href="https://arxiv.org/abs/1911.12232">An Algorithm for Constructing All Supercharacter Theories of a Finite Group</a>, arXiv:1911.12232 [math.GR], 2019.
%F a(n) = 2*Bell(n+1) - 1. - _Vladeta Jovovic_, Feb 11 2003
%F Equals the binomial transform of A186021. Also, a(n) = A186021(n+1) - 1. - _Gary W. Adamson_ May 20 2013
%e a(3) = 29 = (30 - 1) = A186021(4) - 1
%p A060719 := proc(n) option remember; local i; if n=0 then 1 else A060719(n-1)+add(binomial(n-1,i)*(A060719(i)+1),i=0..n-1); fi; end;
%t Array[2 BellB[# + 1] - 1 &, 23, 0] (* _Michael De Vlieger_, Feb 12 2020 *)
%o (PARI) vector(26, n, my(m=n-1); 2*sum(k=0, m+1, stirling(m+1, k, 2)) -1 ) \\ _G. C. Greubel_, Feb 12 2020
%o (Magma) [2*Bell(n+1) -1: n in [0..25]]; // _G. C. Greubel_, Feb 12 2020
%o (Sage) [2*bell_number(n+1)-1 for n in (0..25)] # _G. C. Greubel_, Feb 12 2020
%Y Cf. A000110.
%Y Cf. A186021.
%K easy,nonn
%O 0,2
%A _Frank Ellermann_, Apr 23 2001