login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{j=1..n} j*B(j-1), where B(k) = A000110(k) are the Bell numbers.
4

%I #20 May 12 2024 02:02:29

%S 0,1,3,9,29,104,416,1837,8853,46113,257583,1533308,9676148,64452909,

%T 451475027,3314964857,25442301577,203604718076,1695172374548,

%U 14654631691569,131309475792709,1217516798735521,11664652754184043,115319114738472472,1174967255260496776

%N a(n) = Sum_{j=1..n} j*B(j-1), where B(k) = A000110(k) are the Bell numbers.

%C Number of adjacent blocks in all partitions of the set {1,2,...,n}. An adjacent block is a block of the form (i, i+1, i+2, ...). Example: a(3)=9 because in 1-2-3, 1-23, 12-3, 13-2, and 123 we have 3, 2, 2, 1, and 1 adjacent blocks, respectively.

%H Harvey P. Dale, <a href="/A177255/b177255.txt">Table of n, a(n) for n = 0..575</a>

%F a(n) = Sum_{k=0..n} k * A177254(n,k).

%p with(combinat): a := proc (n) options operator, arrow: sum(j*bell(j-1), j = 1 .. n) end proc; seq(a(n), n = 0 .. 23);

%t With[{nn=30},Join[{0},Accumulate[BellB[Range[0,nn-1]]Range[nn]]]] (* _Harvey P. Dale_, Nov 10 2014 *)

%o (Magma)

%o [n eq 0 select 0 else (&+[j*Bell(j-1): j in [1..n]]): n in [0..30]]; // _G. C. Greubel_, May 11 2024

%o (SageMath)

%o [sum(j*bell_number(j-1) for j in range(1,1+n)) for n in range(31)] # _G. C. Greubel_, May 11 2024

%Y Cf. A000110, A177254, A177256, A177257.

%Y Partial sums of A052889.

%K nonn

%O 0,3

%A _Emeric Deutsch_, May 07 2010