OFFSET
0,3
REFERENCES
J. de la Cal, J. Carcamo, Set partitions and moments of random variables, J. Math. Anal. Applic. 378 (2011) 16 doi:10.1016/j.jmaa.2011.01.002 Remark 5
J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..400
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
Gottfried Helms, Bell Numbers, 2008.
T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346. (Annotated scanned copy)
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 294
FORMULA
E.g.f.: exp(exp(exp(exp(exp(x)-1)-1)-1)-1).
MAPLE
g:= proc(p) local b; b:=proc(n) option remember; if n=0 then 1 else (n-1)! *add(p(k)*b(n-k)/ (k-1)!/ (n-k)!, k=1..n) fi end end: a:= g(g(g(g(1)))): seq(a(n), n=0..30); # Alois P. Heinz, Sep 11 2008
MATHEMATICA
max = 17; Join[{1}, MatrixPower[Array[StirlingS2, {max, max}], 5][[All, 1]]] (* Jean-François Alcover, Mar 03 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Extended with new description by Christian G. Bower, Aug 15 1998
STATUS
approved