|
|
A000359
|
|
Coefficients of iterated exponentials.
(Formerly M3991 N1654)
|
|
13
|
|
|
1, 5, 40, 440, 6170, 105315, 2120610, 49242470, 1296133195, 38152216495, 1242274374380, 44345089721923, 1722416374173854, 72330102999829054, 3265871028909088036, 157797437377747327987, 8124524883679977475839, 444098724261935142753430
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n=1..100
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 301
|
|
FORMULA
|
E.g.f.: -log(1+log(1+log(1+log(1+log(1-x))))).
|
|
MATHEMATICA
|
max = 20; CoefficientList[-Log[1 + Log[1 + Log[1 + Log[1 + Log[1 - x]]]]]/x + O[x]^max, x]*Range[max]! (* Jean-François Alcover, Feb 08 2016 *)
|
|
PROG
|
(PARI) T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = T(n, 5); \\ Seiichi Manyama, Feb 11 2022
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1-x))))))) \\ Seiichi Manyama, Feb 11 2022
|
|
CROSSREFS
|
a(n) = |A039817(n, 1)| (first column of triangle). Cf. A003713, A000268, A000310, A000406, A001765.
Sequence in context: A304866 A202477 A034000 * A121886 A282190 A052868
Adjacent sequences: A000356 A000357 A000358 * A000360 A000361 A000362
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|