login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000359
Coefficients of iterated exponentials.
(Formerly M3991 N1654)
13
1, 5, 40, 440, 6170, 105315, 2120610, 49242470, 1296133195, 38152216495, 1242274374380, 44345089721923, 1722416374173854, 72330102999829054, 3265871028909088036, 157797437377747327987, 8124524883679977475839, 444098724261935142753430
OFFSET
1,2
REFERENCES
J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
FORMULA
E.g.f.: -log(1+log(1+log(1+log(1+log(1-x))))).
MATHEMATICA
max = 20; CoefficientList[-Log[1 + Log[1 + Log[1 + Log[1 + Log[1 - x]]]]]/x + O[x]^max, x]*Range[max]! (* Jean-François Alcover, Feb 08 2016 *)
PROG
(PARI) T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = T(n, 5); \\ Seiichi Manyama, Feb 11 2022
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1-x))))))) \\ Seiichi Manyama, Feb 11 2022
CROSSREFS
a(n) = |A039817(n, 1)| (first column of triangle). Cf. A003713, A000268, A000310, A000406, A001765.
Sequence in context: A304866 A202477 A034000 * A121886 A282190 A052868
KEYWORD
nonn
STATUS
approved