login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000360 Distribution of nonempty triangles inside a fractal rep-4-tile. 11
1, 0, 1, 1, 1, 1, 2, 0, 2, 2, 2, 1, 3, 1, 2, 1, 2, 2, 4, 1, 4, 3, 3, 1, 4, 2, 4, 2, 3, 2, 3, 0, 3, 3, 4, 2, 6, 3, 5, 2, 5, 4, 7, 2, 6, 4, 4, 1, 5, 3, 6, 3, 6, 4, 6, 1, 5, 4, 5, 2, 5, 2, 3, 1, 3, 3, 6, 2, 7, 5, 6, 2, 8, 5, 9, 4, 8, 5, 7, 1, 7, 6, 9, 4, 11, 6, 9, 3, 8, 6, 10, 3, 8, 5, 5, 1, 6, 4, 8, 4, 9, 6, 9, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

a(n) = Running count of congruent nonempty triangles along lines perpendicular to the base of the Gosper-Lafitte triangle.

Also, a(n) = Sum of the coefficients of the terms with an even exponent in the Stern polynomial B(n+1,t), or in other words, the sum of the even-indexed terms (the leftmost is at index 0) of the irregular triangle A125184, starting from its second row. - Antti Karttunen, Apr 20 2017

Back in May 1995, it was proved that a(n) = modulo 3 mapping, (+1,-1,+0)/2, of the Stern-Brocot sequence A002487, dropping its 1st term. - M. Jeremie Lafitte (Levitas), Apr 23 2017

REFERENCES

M. J. Lafitte, Sur l'Effet Noa`h en Geometrie, rapport a l'INPI, Mars 1995.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

S. Klavzar, U. Milutinovic and C. Petr, Stern polynomials, Adv. Appl. Math. 39 (2007) 86-95.

M. J. Lafitte, Ensembles Auto-Similaires d'Intérieur Non-Vide, Preprint Hiver 1997, Chaire de Géometrie, Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, Switzerland. [Cached copy, with permission]

M. J. Lafitte, Fractal triangle underlying A000360, A000361, A000876

M. J. Lafitte, Notes on A000360, A000361, A000876 [Based on a latex file sent by M. Jeremie Lafitte (Levitas) to NJAS in 1995 - see file of emails below]

M. J. Lafitte, Latex source for the pdf file [Sent by MJL to NJAS in 1995 - see file of emails below]

M. J. Lafitte and N. J. A. Sloane, Emails, 1995-2007 (The three sequences mentioned in this correspondence are now A000360, A000361, A000876)

FORMULA

a(3n) = (A002487(3n+1) + 1)/2, a(3n+1) = (A002487(3n+2) - 1)/2, a(3n+2) = A002487(3n+3)/2. - M. Jeremie Lafitte (Levitas), Apr 23 2017

a(0) = 1, a(2n) = a(n) + a(n-1), a(2n+1) = a(n) + 1 - (n-1 mod 3). - Ralf Stephan, Oct 05 2003; Note: according to Ralf Stephan, this formula was found empirically. It follows from that found for the Stern-Brocot sequence A002487 and the first formula. - Antti Karttunen, Apr 21 2017, M. Jeremie Lafitte (Levitas), Apr 23 2017

From Antti Karttunen, Apr 07 2017: (Start)

Ultimately equivalent to the above formulae, we have:

a(n) = A001222(A284553(1+n)).

a(n) = A002487(1+n) - A284556(1+n).

a(n) = b(1+n), with b from a mutual recurrence pair: b(0) = 0, b(1) = 1, b(2n) = c(n), b(2n+1) = b(n) + b(n+1), c(0) = c(1) = 0, c(2n) = b(n), c(2n+1) = c(n) + c(n+1). [c(n) = A284556(n), b(n)+c(n) = A002487(n).]

(End)

MATHEMATICA

a[0] = 1; a[n_?EvenQ] := a[n] = a[n/2] + a[n/2-1]; a[n_?OddQ] := a[n] = a[(n-1)/2] - Mod[(n-1)/2-1, 3] + 1; Table[a[n], {n, 0, 103}] (* Jean-François Alcover, Jan 20 2015, after Ralf Stephan *)

PROG

(Haskell)

import Data.List (transpose)

a000360 n = a000360_list !! n

a000360_list = 1 : concat (transpose

   [zipWith (+) a000360_list $ drop 2 a057078_list,

    zipWith (+) a000360_list $ tail a000360_list])

-- Reinhard Zumkeller, Mar 22 2013

(Scheme, with memoization-macro definec):

(define (A000360 n) (A000360with_prep_0 (+ 1 n)))

(definec (A000360with_prep_0 n) (cond ((<= n 1) n) ((even? n) (A284556 (/ n 2))) (else (+ (A000360with_prep_0 (/ (- n 1) 2)) (A000360with_prep_0 (/ (+ n 1) 2))))))

(definec (A284556 n) (cond ((<= n 1) 0) ((even? n) (A000360with_prep_0 (/ n 2))) (else (+ (A284556 (/ (- n 1) 2)) (A284556 (/ (+ n 1) 2))))))

;; Antti Karttunen, Apr 07 2017

(PARI) a(n) = if(n==0, 1, if(n%2, a((n - 1)/2) - ((n - 1)/2 - 1)%3 + 1, a(n/2) + a(n/2 - 1))); \\ Indranil Ghosh, Apr 20 2017

CROSSREFS

Cf. A002487, A000361, A000876.

Cf. A001222, A057078, A125184, A284553, A284556, A284565 (bisection).

Cf. also mutual recurrence pair A287729, A287730.

Sequence in context: A321665 A047917 A144569 * A023556 A238783 A044944

Adjacent sequences:  A000357 A000358 A000359 * A000361 A000362 A000363

KEYWORD

nonn,nice,easy,eigen,look

AUTHOR

M. Jeremie Lafitte (Levitas)

EXTENSIONS

More terms from David W. Wilson, Aug 30 2000

Original relation to the Stern-Brocot sequence A002487 reformulated by M. Jeremie Lafitte (Levitas), Apr 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 21:00 EST 2019. Contains 329779 sequences. (Running on oeis4.)