login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284553 Prime factorization representation of Stern polynomials B(n,x) with only the even powers of x present: a(n) = A247503(A260443(n)). 4
1, 2, 1, 2, 5, 2, 5, 10, 1, 10, 25, 10, 5, 50, 5, 10, 11, 10, 25, 250, 5, 250, 125, 50, 11, 250, 25, 250, 55, 50, 55, 110, 1, 110, 275, 250, 55, 6250, 125, 1250, 121, 1250, 625, 31250, 55, 6250, 1375, 550, 11, 2750, 275, 6250, 605, 6250, 1375, 13750, 11, 2750, 3025, 2750, 55, 6050, 55, 110, 17, 110, 275, 30250, 55, 68750, 15125, 13750, 121 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n) = Prime factorization representation of Stern polynomials B(n,x) where the coefficients of odd powers of x are replaced by zeros. In other words, only the constant term and other terms with even powers of x are present. See the examples.
Proof that A001222(a(1+n)) matches Ralf Stephan's formula for A000360(n): Consider functions A001222(a(n)) and A001222(A284554(n)) (= A284556(n)). They can be reduced to the following mutual recurrence pair: b(0) = 0, b(1) = 1, b(2n) = c(n), b(2n+1) = b(n) + b(n+1) and c(0) = c(1) = 0, c(2n) = b(n), c(2n+1) = c(n) + c(n+1). From the definitions it follows that the difference b(n) - c(n) for even n is b(2n) - c(2n) = -(b(n) - c(n)), and for odd n, b(2n+1) - c(2n+1) = (b(n)+b(n+1))-(c(n)+c(n+1)) = (b(n)-c(n)) + (b(n+1)-c(n+1)). Then by induction, if we assume that for 3n, 3n+1, 3n+2, ..., 6n, the value of difference b(n)-c(n) is always [0, +1, -1; repeated], it follows that from 6n to 12n the differences are [0, +1, -1; 0, +1, -1; repeated], which proves that b(n) - c(n) = A102283(n). As an implication, recurrence b can be defined without referring to c as: b(0) = 0, b(1) = 1, b(2n) = b(n) - A102283(n), b(2n+1) = b(n)+b(n+1), and this is equal to Ralf Stephan's Oct 05 2003 formula for A000360, but shifted once right, with prepended zero.
LINKS
S. Klavzar, U. Milutinovic and C. Petr, Stern polynomials, Adv. Appl. Math. 39 (2007) 86-95.
FORMULA
a(0) = 1, a(1) = 2, a(2n) = A003961(A284554(n)), a(2n+1) = a(n)*a(n+1).
Other identities. For all n >= 0:
a(n) = A247503(A260443(n)).
a(n) = A260443(n) / A284554(n).
a(n) = A064989(A284554(2n)).
A001222(a(1+n)) = A000360(n). [Proof in Comments section.]
EXAMPLE
n A260443(n) Stern With odd powers
prime factorization polynomial of x cleared -> a(n)
------------------------------------------------------------------------
0 1 (empty) B_0(x) = 0 0 | 1
1 2 p_1 B_1(x) = 1 1 | 2
2 3 p_2 B_2(x) = x 0 | 1
3 6 p_2 * p_1 B_3(x) = x + 1 1 | 2
4 5 p_3 B_4(x) = x^2 x^2 | 5
5 18 p_2^2 * p_1 B_5(x) = 2x + 1 1 | 2
6 15 p_3 * p_2 B_6(x) = x^2 + x x^2 | 5
7 30 p_3 * p_2 * p_1 B_7(x) = x^2 + x + 1 x^2 + 1 | 10
8 7 p_4 B_8(x) = x^3 0 | 1
9 90 p_3 * p_2^2 * p_1 B_9(x) = x^2 + 2x + 1 x^2 + 1 | 10
10 75 p_3^2 * p_2 B_10(x) = 2x^2 + x 2x^2 | 25
MATHEMATICA
a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p, 2])^e) &@ a@ n, {n, 0, 72}] (* Michael De Vlieger, Apr 05 2017 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From Michel Marcus
A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. Charles R Greathouse IV's code for "ps" in A186891 and A277013.
A247503(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 2] *= (primepi(f[i, 1]) % 2); ); factorback(f); } \\ After Michel Marcus
(Scheme) (define (A284553 n) (A247503 (A260443 n)))
CROSSREFS
Sequence in context: A329198 A182436 A064192 * A216913 A124218 A025165
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 29 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 10:39 EDT 2024. Contains 371967 sequences. (Running on oeis4.)