login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284556
Sequence c of the mutual recurrence pair: b(0) = 0, b(1) = 1, b(2n) = c(n), b(2n+1) = b(n) + b(n+1), c(0) = c(1) = 0, c(2n) = b(n), c(2n+1) = c(n) + c(n+1).
8
0, 0, 1, 1, 0, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 2, 0, 3, 2, 3, 2, 4, 2, 4, 1, 3, 3, 4, 1, 4, 2, 2, 1, 3, 2, 5, 2, 5, 4, 5, 1, 6, 4, 6, 3, 6, 3, 5, 1, 4, 4, 6, 2, 7, 4, 5, 2, 5, 3, 6, 2, 4, 3, 3, 0, 4, 3, 5, 3, 7, 4, 7, 2, 7, 6, 9, 3, 9, 5, 6, 2, 7, 5, 10, 4, 10, 7, 9, 2, 9, 6, 9, 4, 8, 4, 6, 1, 5, 5, 8, 3, 10, 6, 8, 3, 9, 6, 11, 4, 9, 6, 7, 1, 7, 5, 8, 4, 9, 5
OFFSET
0,6
LINKS
FORMULA
a(n) = A001222(A284554(n)).
Other identities. For all n >= 1:
a(n) = (A002487(n) - A102283(n))/2.
a(n) = A002487(n) - A000360(n-1).
A000360(n-1) - a(n) = A102283(n) ≡ n (mod 3).
MATHEMATICA
a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[PrimeOmega[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p + 1, 2])^e) &@ a@ n], {n, 0, 118}] (* or *)
a[n_] := Which[n < 2, n, EvenQ@ n, a[n/2], True, a[(n - 1)/2] + a[(n + 1)/2]]; Table[(a[n] - JacobiSymbol[n, 3])/2, {n, 0, 118}] (* Michael De Vlieger, Apr 05 2017, after Alonso del Arte at A102283 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A284556 n) (cond ((<= n 1) 0) ((even? n) (A000360with_prep_0 (/ n 2))) (else (+ (A284556 (/ (- n 1) 2)) (A284556 (/ (+ n 1) 2))))))
(definec (A000360with_prep_0 n) (cond ((<= n 1) n) ((even? n) (A284556 (/ n 2))) (else (+ (A000360with_prep_0 (/ (- n 1) 2)) (A000360with_prep_0 (/ (+ n 1) 2))))))
CROSSREFS
Cf. A000360, A001222, A002487, A102283, A284554, A284566 (odd bisection).
Sequence in context: A066882 A300831 A068347 * A025865 A085091 A345994
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 05 2017
STATUS
approved