Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Apr 06 2017 21:21:45
%S 0,0,1,1,0,2,1,1,1,2,1,3,1,2,2,2,0,3,2,3,2,4,2,4,1,3,3,4,1,4,2,2,1,3,
%T 2,5,2,5,4,5,1,6,4,6,3,6,3,5,1,4,4,6,2,7,4,5,2,5,3,6,2,4,3,3,0,4,3,5,
%U 3,7,4,7,2,7,6,9,3,9,5,6,2,7,5,10,4,10,7,9,2,9,6,9,4,8,4,6,1,5,5,8,3,10,6,8,3,9,6,11,4,9,6,7,1,7,5,8,4,9,5
%N Sequence c of the mutual recurrence pair: b(0) = 0, b(1) = 1, b(2n) = c(n), b(2n+1) = b(n) + b(n+1), c(0) = c(1) = 0, c(2n) = b(n), c(2n+1) = c(n) + c(n+1).
%H Antti Karttunen, <a href="/A284556/b284556.txt">Table of n, a(n) for n = 0..8192</a>
%F a(n) = A001222(A284554(n)).
%F Other identities. For all n >= 1:
%F a(n) = (A002487(n) - A102283(n))/2.
%F a(n) = A002487(n) - A000360(n-1).
%F A000360(n-1) - a(n) = A102283(n) ≡ n (mod 3).
%t a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[PrimeOmega[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p + 1, 2])^e) &@ a@ n], {n, 0, 118}] (* or *)
%t a[n_] := Which[n < 2, n, EvenQ@ n, a[n/2], True, a[(n - 1)/2] + a[(n + 1)/2]]; Table[(a[n] - JacobiSymbol[n, 3])/2, {n, 0, 118}] (* _Michael De Vlieger_, Apr 05 2017, after _Alonso del Arte_ at A102283 *)
%o (Scheme, with memoization-macro definec)
%o (definec (A284556 n) (cond ((<= n 1) 0) ((even? n) (A000360with_prep_0 (/ n 2))) (else (+ (A284556 (/ (- n 1) 2)) (A284556 (/ (+ n 1) 2))))))
%o (definec (A000360with_prep_0 n) (cond ((<= n 1) n) ((even? n) (A284556 (/ n 2))) (else (+ (A000360with_prep_0 (/ (- n 1) 2)) (A000360with_prep_0 (/ (+ n 1) 2))))))
%Y Cf. A000360, A001222, A002487, A102283, A284554, A284566 (odd bisection).
%K nonn
%O 0,6
%A _Antti Karttunen_, Apr 05 2017