login
A085091
Denominator of Sum_{i=2..t} (d(i)/d(i-1)-1), where d(1), ..., d(t) are the divisors of n.
3
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 3, 1, 1, 1, 1, 4, 3, 2, 1, 6, 1, 2, 1, 4, 1, 15, 1, 1, 3, 2, 5, 3, 1, 2, 3, 10, 1, 6, 1, 4, 15, 2, 1, 1, 1, 1, 3, 4, 1, 2, 5, 14, 3, 2, 1, 30, 1, 2, 21, 1, 5, 6, 1, 4, 3, 35, 1, 24, 1, 2, 3, 4, 7, 6, 1, 20, 1, 2, 1, 7, 5, 2, 3, 8, 1, 45, 7, 4, 3, 2, 5, 6, 1, 1, 9, 2, 1
OFFSET
1,6
LINKS
M. D. Vose, Integers with consecutive divisors in small ratio, J. Number Theory, 19 (1984), 233-238.
EXAMPLE
0, 1, 2, 2, 4, 5/2, 6, 3, 4, 7/2, 10, 10/3, 12, 9/2, 14/3, ...
MAPLE
with(numtheory): f := proc(n) local t1, t2, t3, i; t1 := divisors(n); t3 := convert(t1, list); t2 := 0; for i from 2 to nops(t3) do t2 := t2+(t3[i]/t3[i-1]-1); od; t2; end;
PROG
(PARI) my(d = divisors(n)); denominator(sum(i=2, #d, d[i]/d[i-1] - 1)); \\ Michel Marcus, Feb 25 2015
CROSSREFS
Cf. A085085.
Sequence in context: A068347 A284556 A025865 * A345994 A052128 A284600
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Aug 11 2003
STATUS
approved