login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085091
Denominator of Sum_{i=2..t} (d(i)/d(i-1)-1), where d(1), ..., d(t) are the divisors of n.
3
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 3, 1, 1, 1, 1, 4, 3, 2, 1, 6, 1, 2, 1, 4, 1, 15, 1, 1, 3, 2, 5, 3, 1, 2, 3, 10, 1, 6, 1, 4, 15, 2, 1, 1, 1, 1, 3, 4, 1, 2, 5, 14, 3, 2, 1, 30, 1, 2, 21, 1, 5, 6, 1, 4, 3, 35, 1, 24, 1, 2, 3, 4, 7, 6, 1, 20, 1, 2, 1, 7, 5, 2, 3, 8, 1, 45, 7, 4, 3, 2, 5, 6, 1, 1, 9, 2, 1
OFFSET
1,6
LINKS
M. D. Vose, Integers with consecutive divisors in small ratio, J. Number Theory, 19 (1984), 233-238.
EXAMPLE
0, 1, 2, 2, 4, 5/2, 6, 3, 4, 7/2, 10, 10/3, 12, 9/2, 14/3, ...
MAPLE
with(numtheory): f := proc(n) local t1, t2, t3, i; t1 := divisors(n); t3 := convert(t1, list); t2 := 0; for i from 2 to nops(t3) do t2 := t2+(t3[i]/t3[i-1]-1); od; t2; end;
PROG
(PARI) my(d = divisors(n)); denominator(sum(i=2, #d, d[i]/d[i-1] - 1)); \\ Michel Marcus, Feb 25 2015
CROSSREFS
Cf. A085085.
Sequence in context: A068347 A284556 A025865 * A345994 A052128 A284600
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Aug 11 2003
STATUS
approved