Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 07 2018 04:41:07
%S 1,1,1,1,1,2,1,1,1,2,1,3,1,2,3,1,1,1,1,4,3,2,1,6,1,2,1,4,1,15,1,1,3,2,
%T 5,3,1,2,3,10,1,6,1,4,15,2,1,1,1,1,3,4,1,2,5,14,3,2,1,30,1,2,21,1,5,6,
%U 1,4,3,35,1,24,1,2,3,4,7,6,1,20,1,2,1,7,5,2,3,8,1,45,7,4,3,2,5,6,1,1,9,2,1
%N Denominator of Sum_{i=2..t} (d(i)/d(i-1)-1), where d(1), ..., d(t) are the divisors of n.
%H Antti Karttunen, <a href="/A085091/b085091.txt">Table of n, a(n) for n = 1..65537</a>
%H M. D. Vose, <a href="http://dx.doi.org/10.1016/0022-314X(84)90107-0">Integers with consecutive divisors in small ratio</a>, J. Number Theory, 19 (1984), 233-238.
%e 0, 1, 2, 2, 4, 5/2, 6, 3, 4, 7/2, 10, 10/3, 12, 9/2, 14/3, ...
%p with(numtheory): f := proc(n) local t1,t2,t3,i; t1 := divisors(n); t3 := convert(t1,list); t2 := 0; for i from 2 to nops(t3) do t2 := t2+(t3[i]/t3[i-1]-1); od; t2; end;
%o (PARI) my(d = divisors(n)); denominator(sum(i=2, #d, d[i]/d[i-1] - 1)); \\ _Michel Marcus_, Feb 25 2015
%Y Cf. A085085.
%K nonn,frac
%O 1,6
%A _N. J. A. Sloane_, Aug 11 2003