The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025165 a(n) = H_n(1) / 2^floor(n/2) where H_n is the n-th Hermite polynomial. 1
 1, 2, 1, -2, -5, -2, 23, 58, -103, -670, 257, 7214, 4387, -77794, -134825, 819466, 2841841, -7427774, -55739071, 22221790, 1081264139, 1718092478, -20988454441, -79774943398, 402959508745 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..800 Index entries for sequences related to Hermite polynomials FORMULA a(n) = A062267(n)/A016116(n). - R. J. Mathar, Feb 05 2013 Conjecture: a(n) +a(n-1) +(2*n-5)*a(n-2) +(2*n-7)*a(n-3) +(n-2)*(n-3)*a(n-4) +(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Feb 25 2015 MAPLE A025165 := proc(n) HermiteH(n, 1)/2^(floor(n/2)) ; simplify(%) ; end proc: # R. J. Mathar, Feb 05 2013 MATHEMATICA Table[ HermiteH[ n, 1 ]/2^Floor[ n/2 ], {n, 0, 24} ] PROG (PARI) for(n=0, 30, print1(polhermite(n, 1)/2^(floor(n/2)), ", ")) \\ G. C. Greubel, Jul 10 2018 (Magma) [((&+[(-1)^k*Factorial(n)*(2)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]]))/2^(Floor(n/2)): n in [0..30]]; // G. C. Greubel, Jul 10 2018 CROSSREFS Sequence in context: A284553 A216913 A124218 * A345278 A212431 A346517 Adjacent sequences: A025162 A025163 A025164 * A025166 A025167 A025168 KEYWORD sign AUTHOR Wouter Meeussen STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 18:23 EDT 2023. Contains 363076 sequences. (Running on oeis4.)