The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062267 Row sums of (signed) triangle A060821 (Hermite polynomials). 13
 1, 2, 2, -4, -20, -8, 184, 464, -1648, -10720, 8224, 230848, 280768, -4978816, -17257600, 104891648, 727511296, -1901510144, -28538404352, 11377556480, 1107214478336, 1759326697472, -42984354695168, -163379084079104 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..730 FORMULA a(n) = Sum_{m=0..n} A060821(n, m) = H(n, 1), with the Hermite polynomials H(n, x). E.g.f.: exp(-x*(x-2)). a(n) = 2*(a(n - 1) - (n - 1)*a(n - 2)). - Roger L. Bagula, Sep 11 2006 a(n) = 2^n * U(-n/2, 1/2, 1), where U is the confluent hypergeometric function. - Benedict W. J. Irwin, Oct 17 2017 E.g.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^(mu(k)/k). - Ilya Gutkovskiy, May 26 2019 MAPLE A062267 := proc(n)     HermiteH(n, 1) ;     simplify(%) ; end proc: # R. J. Mathar, Feb 05 2013 MATHEMATICA lst={}; Do[p=HermiteH[n, 1]; AppendTo[lst, p], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *) Table[2^n HypergeometricU[-n/2, 1/2, 1], {n, 0, 23}] (* Benedict W. J. Irwin, Oct 17 2017 *) With[{nmax=50}, CoefficientList[Series[Exp[x*(2-x)], {x, 0, nmax}], x]* Range[0, nmax]!] (* G. C. Greubel, Jun 08 2018 *) PROG (Python) from sympy import hermite, Poly def a(n): return sum(Poly(hermite(n, x), x).all_coeffs()) # Indranil Ghosh, May 26 2017 (PARI) x='x+O('x^30); Vec(serlaplace(exp(-x*(x-2)))) \\ G. C. Greubel, Jun 08 2018 (PARI) a(n) = polhermite(n, 1); \\ Michel Marcus, Jun 09 2018 (MAGMA) m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*(2-x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 08 2018 CROSSREFS Cf. A000898, A121966. Sequence in context: A120417 A175185 A257610 * A128501 A288497 A288767 Adjacent sequences:  A062264 A062265 A062266 * A062268 A062269 A062270 KEYWORD sign,easy AUTHOR Wolfdieter Lang, Jun 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 21:28 EDT 2021. Contains 343951 sequences. (Running on oeis4.)