OFFSET
0,3
COMMENTS
The e.g.f. of the m-th (unsigned) column sequence without leading zeros of the generalized (a=4) Laguerre triangle L(4; n+m,m) = A062140(n+m,m), n >= 0, is N(4; m,x)/(1-x)^(5+2*m), with the row polynomials N(4; m,x) := Sum_{k=0..m} a(m,k)*x^k.
FORMULA
a(m, k) = [x^k]N(4; m, x), with N(4; m, x) = ((1-x)^(5+2*m))*(d^m/dx^m)((x^m)/(m!*(1-x)^(m+5))).
N(4; m, x) = Sum_{j=0..m} (binomial(m, j)*(2*m+4-j)!/((m+4)!*(m-j)!)*(x^(m-j))*(1-x)^j).
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved