The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062261 Fourth (unsigned) column sequence of triangle A062140 (generalized a=4 Laguerre). 3
 1, 32, 720, 14400, 277200, 5322240, 103783680, 2075673600, 42810768000, 913296384000, 20183850086400, 462393656524800, 10981849342464000, 270322445352960000, 6893222356500480000, 181981070211612672000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Harry J. Smith, Table of n, a(n) for n=0..100 FORMULA E.g.f.: (1+21*x+63*x^2+35*x^3)/(1-x)^11. a(n) = A062140(n+3, 3). a(n) = (n+3)!*binomial(n+7, 7)/3!. If we define f(n,i,x) =  Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)* Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n-3)=(-1)^(n-1)*f(n,3,-8), (n>=3). - Milan Janjic, Mar 01 2009 MATHEMATICA Table[(n+3)!*Binomial[n+7, 7]/3!, {n, 0, 30}] (* G. C. Greubel, May 13 2018 *) PROG (PARI) { f=2; for (n=0, 100, f*=n + 3; write("b062261.txt", n, " ", f*binomial(n + 7, 7)/6) ) } \\ Harry J. Smith, Aug 03 2009 (MAGMA) [Factorial(n+3)*Binomial(n+7, 7)/6: n in [0..30]]; // G. C. Greubel, May 13 2018 CROSSREFS Cf. A001720, A062199, A062260. Sequence in context: A247997 A199708 A264093 * A060624 A274857 A274754 Adjacent sequences:  A062258 A062259 A062260 * A062262 A062263 A062264 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jun 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 12:16 EST 2021. Contains 349462 sequences. (Running on oeis4.)