login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062260
Third (unsigned) column sequence of triangle A062140 (generalized a=4 Laguerre).
5
1, 21, 336, 5040, 75600, 1164240, 18627840, 311351040, 5448643200, 99891792000, 1917922406400, 38532804710400, 809188898918400, 17739910476288000, 405483668029440000, 9650511299100672000
OFFSET
0,2
FORMULA
E.g.f.: (1+12*x+15*x^2)/(1-x)^9.
a(n) = A062140(n+2, 2) = (n+2)!*binomial(n+6, 6)/2!.
If we define f(n,i,x) = Sum_{k=1..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-2) = (-1)^n * f(n,2,-7), (n>=2). - Milan Janjic, Mar 01 2009
a(n) = binomial(n,6)*(n-4)!/2, n >= 6. - Zerinvary Lajos, Jul 07 2009
MAPLE
a:=n->sum((n-j)*n!/6!, j=5..n): seq(a(n), n=6..21); # Zerinvary Lajos, Apr 29 2007
MATHEMATICA
Table[(n + 2)! Binomial[n + 6, 6]/2, {n, 0, 20}] (* Wesley Ivan Hurt, Jan 23 2017 *)
PROG
(Sage) [binomial(n, 6)*factorial (n-4)/2 for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009
(PARI) { f=1; for (n=0, 100, f*=n + 2; write("b062260.txt", n, " ", f*binomial(n + 6, 6)/2) ) } \\ Harry J. Smith, Aug 03 2009
(Magma) [Factorial(n+2)*Binomial(n+6, 6)/2: n in [0..30]]; // G. C. Greubel, Feb 06 2018
CROSSREFS
Sequence in context: A107396 A036224 A113895 * A278804 A166914 A020311
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved