login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062258
Number of (0,1)-strings of length n not containing the substring 0100100.
2
1, 2, 4, 8, 16, 32, 64, 127, 252, 500, 993, 1972, 3916, 7776, 15441, 30662, 60887, 120906, 240088, 476753, 946709, 1879921, 3733040, 7412858, 14720031, 29230199, 58043664, 115259801, 228876346, 454489608, 902499570, 1792132228
OFFSET
0,2
COMMENTS
Also, number of (0,1)-strings of length n not containing the substring 1001001. - N. J. A. Sloane, Apr 02 2012
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (Problem 2.8.2).
Reilly, J. W.; Stanton, R. G. Variable strings with a fixed substring. Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1971), pp. 483--494. Louisiana State Univ., Baton Rouge, La.,1971. MR0319775 (47 #8317) [From N. J. A. Sloane, Apr 02 2012]
FORMULA
G.f.: (1 + x^3 + x^6)/(1 - 2*x + x^3 - 2*x^4 + x^6 - x^7).
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) - a(n-6) + a(n-7).
MATHEMATICA
CoefficientList[Series[(1+x^3+x^6)/(1-2x+x^3-2x^4+x^6-x^7), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 0, -1, 2, 0, -1, 1}, {1, 2, 4, 8, 16, 32, 64}, 40] (* Harvey P. Dale, Aug 10 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jun 14 2001
STATUS
approved