%I
%S 1,2,4,8,16,32,64,127,252,500,993,1972,3916,7776,15441,30662,60887,
%T 120906,240088,476753,946709,1879921,3733040,7412858,14720031,
%U 29230199,58043664,115259801,228876346,454489608,902499570,1792132228
%N Number of (0,1)-strings of length n not containing the substring 0100100.
%C Also, number of (0,1)-strings of length n not containing the substring 1001001. - _N. J. A. Sloane_, Apr 02 2012
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (Problem 2.8.2).
%D Reilly, J. W.; Stanton, R. G. Variable strings with a fixed substring. Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1971), pp. 483--494. Louisiana State Univ., Baton Rouge, La.,1971. MR0319775 (47 #8317) [From _N. J. A. Sloane_, Apr 02 2012]
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1,2,0,-1,1).
%F G.f.: (1 + x^3 + x^6)/(1 - 2*x + x^3 - 2*x^4 + x^6 - x^7).
%F a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) - a(n-6) + a(n-7).
%t CoefficientList[Series[(1+x^3+x^6)/(1-2x+x^3-2x^4+x^6-x^7),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-1,2,0,-1,1},{1,2,4,8,16,32,64},40] (* _Harvey P. Dale_, Aug 10 2021 *)
%Y Cf. A007931, A062257, A062259.
%K nonn
%O 0,2
%A _Vladeta Jovovic_, Jun 14 2001
|