login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172316
7th column of the array A172119.
6
1, 2, 4, 8, 16, 32, 64, 127, 252, 500, 992, 1968, 3904, 7744, 15361, 30470, 60440, 119888, 237808, 471712, 935680, 1855999, 3681528, 7302616, 14485344, 28732880, 56994048, 113052416, 224248833, 444816138, 882329660
OFFSET
0,2
LINKS
O. Dunkel, Solutions of a probability difference equation, Amer. Math. Monthly, 32 (1925), 354-370; see p. 356 with r = 6.
FORMULA
G.f.: 1/(1 - 2*z + z^7).
Recurrence formula: a(n+7) = 2*a(n+6) - a(n).
a(n) = Sum_{j=0..floor(n/(k+1))} ((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j)) with k=6.
EXAMPLE
a(3) = binomial(3,3)*2^3 = 8.
a(7) = binomial(7,7)*2^7 - binomial(1,0)*2^0 = 127.
MAPLE
for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j, n-(k+1)*j)*2^(n-(k+1)*j), j=0..floor(n/(k+1))):od:k: seq(b(n), n=0..30):od; k:=6:taylor(1/(1-2*z+z^(k+1)), z=0, 30);
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Jan 31 2010
STATUS
approved