login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001949
Solutions of a fifth-order probability difference equation.
(Formerly M1127 N0430)
11
0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 63, 124, 244, 480, 944, 1856, 3649, 7174, 14104, 27728, 54512, 107168, 210687, 414200, 814296, 1600864, 3147216, 6187264, 12163841, 23913482, 47012668, 92424472, 181701728, 357216192, 702268543, 1380623604, 2714234540
OFFSET
0,7
COMMENTS
This sequence is the case r = 5 in the solution to an r-th order probability difference equation that can be found in Eqs. (4) and (3) on p. 356 of Dunkel (1925). (Equation (3) follows equation (4) in the paper!) For r = 2, we get a shifted version of A000071. For r = 3, we get a shifted version of A008937. For r = 4, we get a shifted version of A107066. For r = 6, we get a shifted version of A172316. See also the table in A172119. - Petros Hadjicostas, Jun 15 2019
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
O. Dunkel, Solutions of a probability difference equation, Amer. Math. Monthly, 32 (1925), 354-370; see pp. 356 and 369.
T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011), Article #11.4.2.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
For n >= 6, a(n+1) = 2*a(n) - a(n-5).
G.f.: x^5 / ( (x-1)*(x^5 + x^4 + x^3 + x^2 + x - 1) ).
a(n) = Sum_{k=1..n-4} Sum_{j=0..floor((n-k-4)/5)} (-1)^j*binomial(n-5*j-5, k-1)*binomial(n-k-5*j-4, j). - Vladimir Kruchinin, Oct 19 2011
4*a(n) = A000322(n+1) - 1. - R. J. Mathar, Aug 16 2017
From Petros Hadjicostas, Jun 15 2019: (Start)
a(n) = 1 + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) for n >= 5. (See Eq. (4) and the Theorem with r = 5 on p. 356 of Dunkel (1925).)
a(n) = T(n - 5, 5) for n >= 5, where T(n, k) = Sum_{j = 0..floor(n/(k+1))} (-1)^j * binomial(n - k*j, n - (k+1)*j) * 2^(n - (k+1)*j) for 0 <= k <= n. This is Richard Choulet's formula in A172119.
(End)
MAPLE
A001949:=1/(z-1)/(z**5+z**4+z**3+z**2+z-1); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
t={0, 0, 0, 0, 0}; Do[AppendTo[t, t[[-5]]+t[[-4]]+t[[-3]]+t[[-2]]+t[[-1]]+1], {n, 40}]; t (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
LinearRecurrence[{2, 0, 0, 0, 0, -1}, {0, 0, 0, 0, 0, 1}, 40] (* Harvey P. Dale, Jan 17 2015 *)
PROG
(Maxima)
a(n):=sum(sum((-1)^j*binomial(n-5*j-5, k-1)*binomial(n-k-5*j-4, j), j, 0, (n-k-4)/5), k, 1, n-4); /* Vladimir Kruchinin, Oct 19 2011 */
(PARI) x='x+O('x^99); concat(vector(5), Vec(x^5/((x-1)*(x^5+x^4+x^3+x^2+x-1)))) \\ Altug Alkan, Oct 04 2017
CROSSREFS
Column k = 1 of A141020 (with a different offset) and second main diagonal of A141021 (with no zeros).
Column k = 5 of A172119.
Sequence in context: A290987 A145112 A062259 * A210031 A239558 A239559
KEYWORD
nonn,easy
EXTENSIONS
Name edited by Petros Hadjicostas, Jun 15 2019
STATUS
approved