The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210031 Number of binary words of length n containing no subword 100001. 2
 1, 2, 4, 8, 16, 32, 63, 124, 244, 480, 944, 1857, 3653, 7186, 14136, 27808, 54703, 107610, 211687, 416424, 819176, 1611457, 3170007, 6235937, 12267137, 24131522, 47470763, 93382976, 183700022, 361368844, 710873303, 1398407365, 2750902517, 5411487988 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Each of the subwords 100001, 100011, 100101, 100111, 101001, 101011, 101111, 110001, 110101, 111001, 111101 and their binary complements give the same sequence. LINKS Indranil Ghosh, Table of n, a(n) for n = 0..3396 (terms 0..1000 from Alois P. Heinz) Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,-1,1). FORMULA G.f.: -(x^5+1)/(x^6-x^5+2*x-1). a(n) = 2^n if n<6, and a(n) = 2*a(n-1) -a(n-5) +a(n-6) otherwise. EXAMPLE a(8) = 244 because among the 2^8 = 256 binary words of length 8 only 12, namely 00100001, 01000010, 01000011, 01100001, 10000100, 10000101, 10000110, 10000111, 10100001, 11000010, 11000011, 11100001 contain the subword 100001. MAPLE a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [1, -1, 0, 0, 0, 2][j], 0)))^n. <<1, 2, 4, 8, 16, 32>>)[1, 1]: seq(a(n), n=0..40); CROSSREFS Columns k=33, 35, 37, 39, 41, 43, 47, 49, 53, 57, 61 of A209972. Sequence in context: A145112 A062259 A001949 * A239558 A239559 A001592 Adjacent sequences:  A210028 A210029 A210030 * A210032 A210033 A210034 KEYWORD nonn,easy AUTHOR Alois P. Heinz, Mar 16 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 04:53 EDT 2021. Contains 343937 sequences. (Running on oeis4.)