|
|
A210028
|
|
E.g.f. A(x) satisfies: A(x) = 1 / [Sum_{n>=0} (-x)^n*A(x)^n/n!^2], where A(x) = Sum_{n>=0} a(n)*x^n/n!^2.
|
|
0
|
|
|
1, 1, 7, 136, 5243, 337926, 32835687, 4489157296, 821988647139, 194271151505410, 57588227767731323, 20926176288185481600, 9148417925040487304917, 4737353391259130086721836, 2867750643606307859579827455, 2006632021748934960936683256384
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
EXAMPLE
|
E.g.f.: A(x) = 1 + x + 7*x^2/2!^2 + 136*x^3/3!^2 + 5243*x^4/4!^2 + 337926*x^5/5!^2 +...
such that
A(x) = 1/(1 - x*A(x) + x^2*A(x)^2/2!^2 - x^3*A(x)^3/3!^2 + x^4*A(x)^4/4!^2 +...).
|
|
PROG
|
(PARI) {a(n)=n!^2*polcoeff(1/x*serreverse(x*sum(m=0, n, (-x)^m/m!^2)+x^2*O(x^n)), n)}
for(n=0, 31, print1(a(n), ", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|