OFFSET
0,2
LINKS
Robert Israel, Table of n, a(n) for n = 0..3684
T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2, A(123;1,x).
Index entries for linear recurrences with constant coefficients, signature (4,-5,1,3,-3,1).
MAPLE
f:= gfun:-rectoproc({a(n)-3*a(n+1)+3*a(n+2)+a(n+3)-5*a(n+4)+4*a(n+5)-a(n+6), a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8, a(4) = 16, a(5) = 32}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Aug 16 2017
MATHEMATICA
DeleteCases[#, 0] &@ CoefficientList[Series[(1-2x+x^2-x^4+x^3+x^5)/((1-x)^2*(1-2x +x^3-x^4)), {x, 0, 34}], x] (* Michael De Vlieger, Aug 16 2017 *)
LinearRecurrence[{4, -5, 1, 3, -3, 1}, {1, 2, 4, 8, 16, 32}, 40] (* Vincenzo Librandi, Aug 17 2017 *)
PROG
(Magma) I:=[1, 2, 4, 8, 16, 32]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2) +Self(n-3)+3*Self(n-4)-3*Self(n-5)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 17 2017
(PARI) Vec((1-2*x+x^2-x^4+x^3+x^5)/((1-x)^2*(1-2*x+x^3-x^4)) + O(x^50)) \\ Michel Marcus, Aug 17 2017
(SageMath)
def A290987_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-2*x+x^2-x^4+x^3+x^5)/((1-x)^2*(1-2*x+x^3-x^4)) ).list()
A290987_list(50) # G. C. Greubel, Apr 12 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Aug 16 2017
STATUS
approved