OFFSET
6,2
COMMENTS
This corresponds to S(213,1,x) of Langley if one uses Theorem 8. Note that all three expressions for S(213;t,x), S(213;1,x) and the series on page 22 are mutually incompatible, so we show the sequence one would most likely see in other publications.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 6..1000
T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,0,-1,-1,2,-1).
FORMULA
MATHEMATICA
DeleteCases[#, 0] &@ CoefficientList[Series[x^6*(1+x^3)/(1 -4x +5x^2 -x^3 -2x^4 +x^6 +x^7 -2x^8 +x^9), {x, 0, 36}], x] (* Michael De Vlieger, Aug 16 2017 *)
LinearRecurrence[{4, -5, 1, 2, 0, -1, -1, 2, -1}, {1, 4, 11, 26, 55, 109, 208, 389, 722}, 80] (* Vincenzo Librandi, Aug 17 2017 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^6*(1+x^3)/((1-x)*(1-2*x+x^3-x^4)*(1-x+x^4)) )); // G. C. Greubel, Apr 12 2023
(SageMath)
def A290989_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^6*(1+x^3)/((1-x)*(1-x+x^4)*(1-2*x+x^3-x^4)) ).list()
a=A290989_list(50); a[6:] # G. C. Greubel, Apr 12 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Aug 16 2017
STATUS
approved