login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290989
Expansion of x^6*(1 + x^3)/(1 - 4*x + 5*x^2 - x^3 - 2*x^4 + x^6 + x^7 - 2*x^8 + x^9).
3
1, 4, 11, 26, 55, 109, 208, 389, 722, 1339, 2488, 4634, 8646, 16146, 30160, 56333, 105198, 196413, 366672, 684475, 1277701, 2385080, 4452277, 8311254, 15515091, 28963012, 54067156, 100930660, 188413624, 351723304, 656583197
OFFSET
6,2
COMMENTS
This corresponds to S(213,1,x) of Langley if one uses Theorem 8. Note that all three expressions for S(213;t,x), S(213;1,x) and the series on page 22 are mutually incompatible, so we show the sequence one would most likely see in other publications.
LINKS
T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
FORMULA
G.f.: x^6*(1 + x)*(1 - x + x^2)/((1 - x)*(1 - 2*x + x^3 - x^4)*(1 - x + x^4)).
a(n) = -2 + (1/19)*( 9*A099530(n+1) + 15*A099530(n) + 2*A099530(n-1) - A099530(n- 2) + 10*A059633(n+4) - 6*A059633(n+3) - 16*A059633(n+2) - A059633(n+1) ). - G. C. Greubel, Apr 12 2023
MATHEMATICA
DeleteCases[#, 0] &@ CoefficientList[Series[x^6*(1+x^3)/(1 -4x +5x^2 -x^3 -2x^4 +x^6 +x^7 -2x^8 +x^9), {x, 0, 36}], x] (* Michael De Vlieger, Aug 16 2017 *)
LinearRecurrence[{4, -5, 1, 2, 0, -1, -1, 2, -1}, {1, 4, 11, 26, 55, 109, 208, 389, 722}, 80] (* Vincenzo Librandi, Aug 17 2017 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^6*(1+x^3)/((1-x)*(1-2*x+x^3-x^4)*(1-x+x^4)) )); // G. C. Greubel, Apr 12 2023
(SageMath)
def A290989_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^6*(1+x^3)/((1-x)*(1-x+x^4)*(1-2*x+x^3-x^4)) ).list()
a=A290989_list(50); a[6:] # G. C. Greubel, Apr 12 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Aug 16 2017
STATUS
approved