login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290986
Expansion of x^6/((1 - x)^2*(1 - 2*x + x^3 - x^4)).
3
1, 4, 11, 25, 52, 103, 199, 379, 716, 1346, 2523, 4721, 8825, 16487, 30791, 57494, 107343, 200400, 374116, 698403, 1303770, 2433846, 4543428, 8481513, 15832975, 29556394, 55174730, 102998026, 192272662, 358927018, 670030771
OFFSET
6,2
LINKS
T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
FORMULA
a(n) = A049858(n-2) - (n-2).
MAPLE
f:= gfun:-rectoproc({a(n)-a(n+1)+2*a(n+3)-a(n+4)+n-1, a(0) = 0, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 0, a(5) = 0, a(6) = 1}, a(n), remember):
map(f, [$6..100]); # Robert Israel, Aug 17 2017
MATHEMATICA
LinearRecurrence[{4, -5, 1, 3, -3, 1}, {1, 4, 11, 25, 52, 103}, 40] (* Vincenzo Librandi, Aug 17 2017 *)
PROG
(PARI) Vec(x^6/((1-x)^2*(1-2*x+x^3-x^4)) + O(x^50)) \\ Michel Marcus, Aug 17 2017
(Magma) I:=[1, 4, 11, 25, 52, 103]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+Self(n-3)+3*Self(n-4)-3*Self(n-5)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 17 2017
(SageMath)
def A290986_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^6/((1-x)^2*(1-2*x+x^3-x^4)) ).list()
a=A290986_list(50); a[6:] # G. C. Greubel, Apr 12 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Aug 16 2017
STATUS
approved