login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290986 Expansion of x^6/((1 - x)^2*(1 - 2*x + x^3 - x^4)). 3
1, 4, 11, 25, 52, 103, 199, 379, 716, 1346, 2523, 4721, 8825, 16487, 30791, 57494, 107343, 200400, 374116, 698403, 1303770, 2433846, 4543428, 8481513, 15832975, 29556394, 55174730, 102998026, 192272662, 358927018, 670030771 (list; graph; refs; listen; history; text; internal format)
OFFSET
6,2
LINKS
T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
FORMULA
a(n) = A049858(n-2) - (n-2).
MAPLE
f:= gfun:-rectoproc({a(n)-a(n+1)+2*a(n+3)-a(n+4)+n-1, a(0) = 0, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 0, a(5) = 0, a(6) = 1}, a(n), remember):
map(f, [$6..100]); # Robert Israel, Aug 17 2017
MATHEMATICA
LinearRecurrence[{4, -5, 1, 3, -3, 1}, {1, 4, 11, 25, 52, 103}, 40] (* Vincenzo Librandi, Aug 17 2017 *)
PROG
(PARI) Vec(x^6/((1-x)^2*(1-2*x+x^3-x^4)) + O(x^50)) \\ Michel Marcus, Aug 17 2017
(Magma) I:=[1, 4, 11, 25, 52, 103]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+Self(n-3)+3*Self(n-4)-3*Self(n-5)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 17 2017
(SageMath)
def A290986_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^6/((1-x)^2*(1-2*x+x^3-x^4)) ).list()
a=A290986_list(50); a[6:] # G. C. Greubel, Apr 12 2023
CROSSREFS
Sequence in context: A113684 A356619 A014173 * A209232 A266337 A262158
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Aug 16 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 19 19:39 EDT 2024. Contains 374436 sequences. (Running on oeis4.)