Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Apr 13 2023 15:34:20
%S 1,4,11,25,52,103,199,379,716,1346,2523,4721,8825,16487,30791,57494,
%T 107343,200400,374116,698403,1303770,2433846,4543428,8481513,15832975,
%U 29556394,55174730,102998026,192272662,358927018,670030771
%N Expansion of x^6/((1 - x)^2*(1 - 2*x + x^3 - x^4)).
%H Robert Israel, <a href="/A290986/b290986.txt">Table of n, a(n) for n = 6..3688</a>
%H T. Langley, J. Liese, and J. Remmel, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Langley/langley2.html">Generating Functions for Wilf Equivalence Under Generalized Factor Order</a>, J. Int. Seq. 14 (2011) # 11.4.2.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,1,3,-3,1).
%F a(n) = A049858(n-2) - (n-2).
%p f:= gfun:-rectoproc({a(n)-a(n+1)+2*a(n+3)-a(n+4)+n-1, a(0) = 0, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 0, a(5) = 0, a(6) = 1}, a(n), remember):
%p map(f, [$6..100]); # _Robert Israel_, Aug 17 2017
%t LinearRecurrence[{4,-5,1,3,-3,1}, {1,4,11,25,52,103}, 40] (* _Vincenzo Librandi_, Aug 17 2017 *)
%o (PARI) Vec(x^6/((1-x)^2*(1-2*x+x^3-x^4)) + O(x^50)) \\ _Michel Marcus_, Aug 17 2017
%o (Magma) I:=[1,4,11,25,52,103]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+Self(n-3)+3*Self(n-4)-3*Self(n-5)+Self(n-6): n in [1..40]]; // _Vincenzo Librandi_, Aug 17 2017
%o (SageMath)
%o def A290986_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( x^6/((1-x)^2*(1-2*x+x^3-x^4)) ).list()
%o a=A290986_list(50); a[6:] # _G. C. Greubel_, Apr 12 2023
%Y Cf. A049858, A290987, A290989.
%K nonn,easy
%O 6,2
%A _R. J. Mathar_, Aug 16 2017