The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006261 a(n) = Sum_{k=0..5} binomial(n,k). (Formerly M1126) 37
 1, 2, 4, 8, 16, 32, 63, 120, 219, 382, 638, 1024, 1586, 2380, 3473, 4944, 6885, 9402, 12616, 16664, 21700, 27896, 35443, 44552, 55455, 68406, 83682, 101584, 122438, 146596, 174437, 206368, 242825, 284274, 331212, 384168, 443704 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the sum of the first six terms of the n-th row in Pascal's triangle. - Geoffrey Critzer, Jan 19 2009 Also the interpolating polynomial for the divisors of 32: {a(k): 0 <= k < 6} = {1,2,4,8,16,32}. - Reinhard Zumkeller, Jun 17 2009 a(n) is the maximal number of regions in 5-space formed by n-1 4-dimensional hypercubes. - Carl Schildkraut, May 26 2015 a(n) is the number of binary words of length n matching the regular expression 1*0*1*0*1*0*. A000124, A000125, A000127 count binary words of the form 0*1*0*, 1*0*1*0*, and 0*1*0*1*0*, respectively. - Manfred Scheucher, Jun 22 2023 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2. M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 S. C. Chan, Letter to N. J. A. Sloane, Oct. 1975 M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy) R. K. Guy, Letter to N. J. A. Sloane Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 R. Zumkeller, Enumerations of Divisors Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -15, 6, -1). FORMULA a(n) = binomial(n+1, 5) + binomial(n+1, 3) + binomial(n+1, 1). - Len Smiley, Oct 20 2001 G.f.: (1 - 4*x + 7*x^2 - 6*x^3 + 3*x^4)/(1-x)^6. - Geoffrey Critzer, Jan 19 2009 E.g.f.: (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120)*exp(x) a(n) = (n^5 - 5*n^4 + 25*n^3 + 5*n^2 + 94*n + 120)/120. - Reinhard Zumkeller, Jun 17 2009 a(n) = a(n-1) + A000127(n-1). - Christian Schroeder, Jan 04 2016 EXAMPLE a(7) = 120 because the first six terms in the 7th row of Pascal's triangle 1 + 7 + 21 + 35 + 35 + 21 = 120. - Geoffrey Critzer, Jan 19 2009 MAPLE A006261:=(z**2-z+1)*(3*z**2-3*z+1)/(z-1)**6; # Simon Plouffe in his 1992 dissertation MATHEMATICA CoefficientList[ Series[(1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120) Exp[x], {x, 0, 52}], x]*Table[n!, {n, 0, 52}] PROG (Sage) [binomial(n, 1)+binomial(n, 3)+binomial(n, 5) for n in range(1, 38)] # Zerinvary Lajos, May 17 2009 (Magma) [(n^5 - 5*n^4 + 25*n^3 + 5*n^2 + 94*n + 120)/120: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011 (Haskell) a006261 = sum . take 6 . a007318_row -- Reinhard Zumkeller, Nov 24 2012 (Python) A006261_list, m = [], [1, -3, 4, -2, 1, 1] for _ in range(10**2): A006261_list.append(m[-1]) for i in range(5): m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016 (PARI) a(n)=sum(k=0, 5, binomial(n, k)) \\ Charles R Greathouse IV, Apr 08 2016 CROSSREFS A057703(n) + 1. A005408, A000124, A016813, A086514, A000125, A058331, A002522, A161701, A161702, A161703, A000127, A161704, A161706, A161707, A161708, A161710, A080856, A161711, A161712, A161713, A161715, A007318, A008859, A008860, A008861, A008862, A008863, A219531. Sequence in context: A054043 A052396 A051040 * A290987 A145112 A062259 Adjacent sequences: A006258 A006259 A006260 * A006262 A006263 A006264 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, based on a suggestion from S. C. Chan, Jun 10 1975 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 16:01 EST 2023. Contains 367612 sequences. (Running on oeis4.)