login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161702
a(n) = (-n^3 + 9n^2 - 5n + 3)/3.
18
1, 2, 7, 14, 21, 26, 27, 22, 9, -14, -49, -98, -163, -246, -349, -474, -623, -798, -1001, -1234, -1499, -1798, -2133, -2506, -2919, -3374, -3873, -4418, -5011, -5654, -6349, -7098, -7903, -8766, -9689, -10674, -11723, -12838, -14021, -15274
OFFSET
0,2
COMMENTS
{a(k): 0 <= k < 4} = divisors of 14:
a(n) = A027750(A006218(13) + k + 1), 0 <= k < A000005(14).
FORMULA
a(n) = C(n,0) + C(n,1) + 4*C(n,2) - 2*C(n,3).
G.f.: (1-2*x+5*x^2-6*x^3)/(1-x)^4. - Colin Barker, Jan 08 2012
a(0)=1, a(1)=2, a(2)=7, a(3)=14, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Jun 15 2013
EXAMPLE
Differences of divisors of 14 to compute the coefficients of their interpolating polynomial, see formula:
1 2 7 14
1 5 7
4 2
-2
MAPLE
A161702:=n->(-n^3 + 9*n^2 - 5*n + 3)/3: seq(A161702(n), n=0..60); # Wesley Ivan Hurt, Jul 16 2017
MATHEMATICA
Table[(-n^3+9n^2-5n+3)/3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 2, 7, 14}, 40] (* Harvey P. Dale, Jun 15 2013 *)
PROG
(Magma) [(-n^3 + 9*n^2 - 5*n + 3)/3: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
(PARI) a(n)=(-n^3+9*n^2-5*n+3)/3 \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
sign,easy
AUTHOR
Reinhard Zumkeller, Jun 17 2009
STATUS
approved