OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
R. Zumkeller, Enumerations of Divisors
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = C(n,0) + C(n,1) + 4*C(n,2) - 2*C(n,3).
G.f.: (1-2*x+5*x^2-6*x^3)/(1-x)^4. - Colin Barker, Jan 08 2012
a(0)=1, a(1)=2, a(2)=7, a(3)=14, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Jun 15 2013
EXAMPLE
Differences of divisors of 14 to compute the coefficients of their interpolating polynomial, see formula:
1 2 7 14
1 5 7
4 2
-2
MAPLE
MATHEMATICA
Table[(-n^3+9n^2-5n+3)/3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 2, 7, 14}, 40] (* Harvey P. Dale, Jun 15 2013 *)
PROG
(Magma) [(-n^3 + 9*n^2 - 5*n + 3)/3: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
(PARI) a(n)=(-n^3+9*n^2-5*n+3)/3 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Reinhard Zumkeller, Jun 17 2009
STATUS
approved