OFFSET
0,2
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
R. Zumkeller, Enumerations of Divisors
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = C(n,0) + C(n,1) + C(n,4) + C(n,5).
G.f.: (1-4*x+6*x^2-4*x^3+2*x^4)/(1-x)^6. - Colin Barker, Aug 20 2012
EXAMPLE
Differences of divisors of 12 to compute the coefficients of their interpolating polynomial, see formula:
1 2 3 4 6 12
1 1 1 2 6
0 0 1 4
0 1 3
1 2
1
MAPLE
A161701:=n->(n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120: seq(A161701(n), n=0..60); # Wesley Ivan Hurt, Jul 16 2017
MATHEMATICA
CoefficientList[Series[(1-4*x+6*x^2-4*x^3+2*x^4)/(1-x)^6, {x, 0, 50}], x] (* G. C. Greubel, Jul 16 2017 *)
PROG
(Magma) [(n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
(PARI) a(n)=(n^5-5*n^4+5*n^3+5*n^2+114*n+120)/120 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jun 17 2009
STATUS
approved