|
|
A080856
|
|
a(n) = 8*n^2 - 4*n + 1.
|
|
26
|
|
|
1, 5, 25, 61, 113, 181, 265, 365, 481, 613, 761, 925, 1105, 1301, 1513, 1741, 1985, 2245, 2521, 2813, 3121, 3445, 3785, 4141, 4513, 4901, 5305, 5725, 6161, 6613, 7081, 7565, 8065, 8581, 9113, 9661, 10225, 10805, 11401, 12013, 12641, 13285, 13945, 14621
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The old definition of this sequence was "Generalized polygonal numbers".
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=4, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=3, a(n-1)= coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jan 27 2010
Also sequence found by reading the segment (1, 5) together with the line from 5, in the direction 5, 25,..., in the square spiral whose vertices are the generalized hexagonal numbers A000217. - Omar E. Pol, Nov 05 2012
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1+2*x+13*x^2)/(1-x)^3.
|
|
MAPLE
|
|
|
MATHEMATICA
|
|
|
PROG
|
|
|
CROSSREFS
|
Cf. A005408, A000124, A016813, A086514, A000125, A058331, A002522, A161701, A161702, A161703, A000127, A161704, A161706, A161707, A161708, A161710, A161711, A161712, A161713, A161715, A006261.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Definition replaced with the closed form by Bruno Berselli, Jan 16 2013
|
|
STATUS
|
approved
|
|
|
|