login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161713
a(n) = (-n^5 + 15*n^4 - 65*n^3 + 125*n^2 - 34*n + 40)/40.
21
1, 2, 4, 7, 14, 28, 49, 71, 79, 46, -70, -329, -812, -1624, -2897, -4793, -7507, -11270, -16352, -23065, -31766, -42860, -56803, -74105, -95333, -121114, -152138, -189161, -233008, -284576, -344837, -414841, -495719, -588686, -695044
OFFSET
0,2
COMMENTS
{a(k): 0 <= k < 6} = divisors of 28:
a(n) = A027750(A006218(27) + k + 1), 0 <= k < A000005(28).
LINKS
FORMULA
a(n) = C(n,0) + C(n,1) + C(n,2) + 3*C(n,4) - 3*C(n,5).
G.f.: -(-1+4*x-7*x^2+7*x^3-7*x^4+7*x^5)/(-1+x)^6. - R. J. Mathar, Jun 18 2009
a(0)=1, a(1)=2, a(2)=4, a(3)=7, a(4)=14, a(5)=28, a(n)=6*a(n-1)- 15*a(n-2)+ 20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, Jan 14 2014
EXAMPLE
Differences of divisors of 28 to compute the coefficients of their interpolating polynomial, see formula:
1 2 4 7 14 28
1 2 3 7 14
1 1 4 7
0 3 3
3 0
-3
MATHEMATICA
Table[(-n^5+15n^4-65n^3+125n^2-34n)/40+1, {n, 0, 40}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 2, 4, 7, 14, 28}, 40] (* Harvey P. Dale, Jan 14 2014 *)
PROG
(Magma) [(-n^5 + 15*n^4 - 65*n^3 + 125*n^2 - 34*n + 40)/40: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
(PARI) a(n)=(-n^5+15*n^4-65*n^3+125*n^2-34*n+40)/40 \\ Charles R Greathouse IV, Sep 24 2015
(Python)
def A161713(n): return n*(n*(n*(n*(15 - n) - 65) + 125) - 34)//40 + 1 # Chai Wah Wu, Dec 16 2021
KEYWORD
sign,easy
AUTHOR
Reinhard Zumkeller, Jun 17 2009
STATUS
approved