login
A239791
Number of compositions of n with no consecutive 2's.
2
1, 1, 2, 4, 7, 14, 28, 54, 105, 205, 399, 777, 1514, 2949, 5744, 11189, 21795, 42454, 82696, 161083, 313772, 611194, 1190540, 2319043, 4517245, 8799105, 17139705, 33386292, 65032887, 126677032, 246753161, 480648477, 936251262, 1823716224, 3552402011, 6919695006, 13478817664, 26255279382, 51142445325
OFFSET
0,3
FORMULA
G.f.: (1 + x^2)/(1 - (2*x^5/(1 - x) + x + x^4 + 2*x^3)) = (x - 1)*(1 + x^2) / (-1 + 2*x - x^2 + 2*x^3 - x^4 + x^5).
Generally, for fixed integer k>=1, the g.f. for the number of compositions with no consecutive k's: (1 + x^k)/(1 - (2*x^(2*k + 1)/(1-x) + x^(2*k) + Sum_{j=1..k-1} x^j + Sum{j=k+1..2*k-1} 2*x^j)).
Another way to write G. Critzer's general g.f. above: 1/((1 - 2*x)/(1 - x) + x^(2*k)/(1 + x^k)). - Petros Hadjicostas, Dec 03 2017
Recurrence: a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) + a(n-5). - Petros Hadjicostas, Aug 02 2020
EXAMPLE
a(5) = 14 because there are 16 compositions of 5, but we don't count 2+2+1 and 1+2+2.
MATHEMATICA
nn=30; k=2; CoefficientList[Series[(1+x^k)/(1-(2x^(2k+1)/(1-x)+x^(2k)+Sum[x^j, {j, 1, k-1}]+Sum[2x^j, {j, k+1, 2k-1}])), {x, 0, nn}], x]
CoefficientList[Series[(1 + x^2)/(1 - (2 x^5/(1 - x) + x + x^4 + 2 x^3)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 29 2014 *)
PROG
(PARI) Vec( (1 + x^2)/(1 - (2*x^5/(1-x) + x + x^4 + 2*x^3)) + O(x^66) ) \\ Joerg Arndt, Mar 27 2014
CROSSREFS
Cf. A000213 (compositions with no consecutive 1's), A003242.
Sequence in context: A161713 A018330 A068060 * A358837 A251653 A057744
KEYWORD
nonn,easy
AUTHOR
Geoffrey Critzer, Mar 26 2014
STATUS
approved