login
A239790
The smallest multidigit prime of a sequence of n consecutive primes such that their digit sums are also a sequence of n consecutive primes.
2
11, 41, 41, 191, 402131, 6340271501
OFFSET
1,1
COMMENTS
a(7), if it exists, is larger than 2*10^14. - Giovanni Resta, Apr 03 2014
a(7) <= 101100010001001200110001. - Jens Kruse Andersen, Aug 28 2016
LINKS
Bill Sindelar, Jens Kruse Andersen, Marian Otremba, Two Sets of Consecutive Primes and their Sum of Digits Connection, digest of 12 messages in primenumbers Yahoo group, Aug 26 - Aug 30, 2016.
EXAMPLE
a(4)=191 because 191, 193, 197, 199 generates 11, 13, 17, 19.
a(5)=402131 because 402131, 402133, 402137, 402139, 402197 generates 11,13,17,19,23.
PROG
(UBASIC)
10 P=7:KM=0:'puzzle 1290, Meller
20 P=nxtprm(P):if P>2^32-20 then end
30 gosub *K:if K<=KM then goto 20
40 print K, P, Q1:KM=K:goto 20
100 *K
110 Z=P:gosub *SODZ
120 if SODZ<>prmdiv(SODZ) then return
130 K=1:Q=SODZ:Q1=Q
140 Z=nxtprm(Z):gosub *SODZ
150 if SODZ<>nxtprm(Q) then return
160 K=K+1:Q=nxtprm(Q):goto 140
200 *SODZ:SODZ=0:L=alen(Z)
210 for I=1 to L:D=val(mid(str(Z), I+1, 1))
220 SODZ=SODZ+D:next I
230 return
CROSSREFS
KEYWORD
nonn,base,hard
AUTHOR
Carlos Rivera, Mar 26 2014
EXTENSIONS
a(6) from Giovanni Resta, Apr 03 2014
STATUS
approved