The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065079 Primes > 3 for which the alternating bit sum (A065359) is not equal to 1 or 2. 1
 11, 41, 43, 47, 59, 107, 131, 137, 139, 163, 167, 173, 179, 191, 227, 233, 239, 251, 277, 337, 349, 373, 419, 431, 443, 491, 521, 523, 547, 557, 563, 569, 571, 587, 617, 619, 641, 643, 647, 653, 659, 673, 677, 683, 691, 701, 719, 739, 743, 751, 761, 809 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Differs from A065049 beginning with 683. REFERENCES William Paulsen, wpaulsen(AT)csm.astate.edu, personal communication. LINKS Harry J. Smith, Table of n, a(n) for n=1,...,1000 EXAMPLE 11 is in the sequence because 11d = 1011b, so the alternating digits sum of 11 is 1 -1 +0 -1 = -1 which is neither 1 nor 2. MATHEMATICA Do[d = Reverse[ IntegerDigits[ Prime[n], 2]]; l = Length[d]; s = 0; k = 1; While[k < l + 1, s = s - (-1)^k*d[[k]]; k++ ]; If[s != 1 && s != 2, Print[ Prime[n]]], {n, 3, 141} ] PROG (PARI) baseE(x, b)= { local(d, e=0, f=1); while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=10); return(e) } SumAD(x)= { local(a=1, s=0); while (x>9, s+=a*(x-10*(x\10)); x\=10; a=-a); return(s + a*x) } { n=0; for (m=3, 10^9, p=prime(m); s=SumAD(baseE(p, 2)); if (s!=1 && s!=2, write("b065079.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 06 2009 (PARI)f(p)={s=0; u=1; for(k=0, #binary(p)-1, s+=bittest(p, k)*u; u=-u); return(s)}; forprime(p=5, 809, F=f(p); if((F!=1)&&(F!=2), print1(p, ", "))) \\ Washington Bomfim, Jan 18 2011 CROSSREFS Cf. A065049. Sequence in context: A088622 A121171 A239790 * A065049 A158201 A350006 Adjacent sequences: A065076 A065077 A065078 * A065080 A065081 A065082 KEYWORD base,nonn,easy AUTHOR Robert G. Wilson v, Nov 08 2001 EXTENSIONS "> 3" added to definition by Harry J. Smith, Oct 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 12:41 EST 2023. Contains 367656 sequences. (Running on oeis4.)