login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239788
Numbers n such that 3n^3 +/- 1 are twin primes.
1
4, 10, 14, 36, 54, 64, 70, 86, 150, 174, 176, 180, 200, 306, 384, 440, 494, 650, 706, 800, 824, 924, 976, 980, 986, 1020, 1026, 1054, 1360, 1464, 1504, 1506, 1536, 1564, 1604, 1680, 1724, 1736, 2066, 2076, 2116, 2134, 2136, 2166, 2200, 2220, 2314, 2380, 2456
OFFSET
1,1
COMMENTS
Numbers in this sequence are all even.
LINKS
EXAMPLE
3*4^3-1 = 191 is prime and 3*4^3+1 = 193 is prime. Thus, 4 is a member of this sequence.
MATHEMATICA
Select[Range[5000], PrimeQ[3 #^3 - 1] && PrimeQ[3 #^3 + 1]&] (* Vincenzo Librandi, Mar 29 2014 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(n) for n in range(10**4) if isprime(3*(n**3)+1) and isprime(3*(n**3)-1)}
(PARI) s=[]; for(n=1, 3000, if(isprime(3*n^3-1) && isprime(3*n^3+1), s=concat(s, n))); s \\ Colin Barker, Mar 27 2014
(Magma) [n: n in [0..5000] | IsPrime(3*n^3-1) and IsPrime(3*n^3+1)]; // Vincenzo Librandi, Mar 29 2014
CROSSREFS
Sequence in context: A125302 A365679 A175588 * A136862 A191635 A123925
KEYWORD
nonn,easy
AUTHOR
Derek Orr, Mar 26 2014
STATUS
approved