login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161712 a(n) = (4*n^3 - 6*n^2 + 8*n + 3)/3. 17
1, 3, 9, 27, 65, 131, 233, 379, 577, 835, 1161, 1563, 2049, 2627, 3305, 4091, 4993, 6019, 7177, 8475, 9921, 11523, 13289, 15227, 17345, 19651, 22153, 24859, 27777, 30915, 34281, 37883, 41729, 45827, 50185, 54811, 59713, 64899, 70377, 76155 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

{a(k): 0 <= k < 4} = divisors of 27:

a(n) = A027750(A006218(26) + k + 1), 0 <= k < A000005(27).

a(n), n > 0 is the number of points of the half-integer lattice in R^n that lie in the open unit ball. - Tom Harris, Jun 15 2021

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Reinhard Zumkeller, Enumerations of Divisors

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = C(n,0) + 2*C(n,1) + 4*C(n,2) + 8*C(n,3).

G.f.: ((x+1)(1+x(5x-2)))/(x-1)^4. - Harvey P. Dale, Apr 13 2011

E.g.f.: (1/3)*(4*x^3 + 6*x^2 + 6*x + 3)*exp(x). - G. C. Greubel, Jul 16 2017

EXAMPLE

Differences of divisors of 27 to compute the coefficients of their interpolating polynomial, see formula:

1 3 9 27

2 6 18

4 12

8

MATHEMATICA

Table[(4n^3-6n^2+8n+3)/3, {n, 0, 80}] (* Harvey P. Dale, Apr 13 2011 *)

PROG

(PARI) a(n)=(4*n^3-6*n^2+8*n)/3+1 \\ Charles R Greathouse IV, Jul 16 2011

(Magma) [(4*n^3 - 6*n^2 + 8*n + 3)/3: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011

CROSSREFS

Sequence in context: A201202 A260938 A274626 * A280466 A137368 A191007

Adjacent sequences: A161709 A161710 A161711 * A161713 A161714 A161715

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Jun 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 01:51 EST 2022. Contains 358649 sequences. (Running on oeis4.)