login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161708 a(n) = -n^3 + 7*n^2 - 5*n + 1. 20
1, 2, 11, 22, 29, 26, 7, -34, -103, -206, -349, -538, -779, -1078, -1441, -1874, -2383, -2974, -3653, -4426, -5299, -6278, -7369, -8578, -9911, -11374, -12973, -14714, -16603, -18646, -20849, -23218, -25759, -28478, -31381, -34474, -37763, -41254 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
{a(k): 0 <= k < 4} = divisors of 22:
a(n) = A027750(A006218(21) + k + 1), 0 <= k < A000005(22).
LINKS
Reinhard Zumkeller, Enumerations of Divisors
FORMULA
a(n) = C(n,0) + C(n,1) + 8*C(n,2) - 6*C(n,3).
G.f.: -(-1+2*x-9*x^2+14*x^3)/(-1+x)^4. - R. J. Mathar, Jun 18 2009
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) with a(0)=1, a(1)=2, a(2)=11, a(3)=22. - Harvey P. Dale, Nov 12 2013
E.g.f.: (-x^3 + 4*x^2 + x + 1)*exp(x). - G. C. Greubel, Jul 16 2017
EXAMPLE
Differences of divisors of 22 to compute the coefficients of their interpolating polynomial, see formula:
1 2 11 22
1 9 11
8 2
-6
MATHEMATICA
Table[-n^3+7n^2-5n+1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 2, 11, 22}, 40] (* Harvey P. Dale, Nov 12 2013 *)
PROG
(Magma) [-n^3 + 7*n^2 - 5*n + 1: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
(PARI) a(n)=-n^3+7*n^2-5*n+1 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Sequence in context: A218340 A018491 A031010 * A076206 A018563 A018590
KEYWORD
sign,easy
AUTHOR
Reinhard Zumkeller, Jun 17 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 13 17:26 EDT 2024. Contains 371644 sequences. (Running on oeis4.)