login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161705 a(n) = 18*n + 1. 18
1, 19, 37, 55, 73, 91, 109, 127, 145, 163, 181, 199, 217, 235, 253, 271, 289, 307, 325, 343, 361, 379, 397, 415, 433, 451, 469, 487, 505, 523, 541, 559, 577, 595, 613, 631, 649, 667, 685, 703, 721, 739, 757, 775, 793, 811, 829, 847, 865, 883, 901, 919, 937, 955 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Digital root of a(n) is 1. - Alexander R. Povolotsky, Jun 13 2012

These numbers can be written as the sum of four integer cubes as a(n) = (2*n + 14)^3 + (3*n + 30)^3 + (- 2*n - 23)^3 + (- 3*n - 26)^3. - Arkadiusz Wesolowski, Aug 15 2013

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

a(n) = 18*n + 1, n >= 0.

a(n) = a(n-1) + 18 (with a(0)=1). - Vincenzo Librandi, Dec 27 2010

From G. C. Greubel, Feb 17 2017: (Start)

G.f.: (1 + 17*x)/(1-x)^2.

E.g.f.: (1 + 18*x)*exp(x).

a(n) = 2*a(n-1) - a(n-2). (End)

MATHEMATICA

Range[1, 1000, 18] (* Vladimir Joseph Stephan Orlovsky, Jun 01 2011 *)

LinearRecurrence[{2, -1}, {1, 19}, 50] (* G. C. Greubel, Feb 17 2017 *)

PROG

(PARI) for(n=0, 25, print1(18*n+1, ", ")) \\ G. C. Greubel, Feb 17 2017

CROSSREFS

Cf. A161700, A005408, A016813, A016921, A017281, A017533, A158057, A161709, A161714, A128470, A287326 (fourth column).

Sequence in context: A245363 A109639 A225863 * A131600 A175546 A162471

Adjacent sequences:  A161702 A161703 A161704 * A161706 A161707 A161708

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Jun 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 20:55 EST 2018. Contains 318049 sequences. (Running on oeis4.)