The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161705 a(n) = 18*n + 1. 19
 1, 19, 37, 55, 73, 91, 109, 127, 145, 163, 181, 199, 217, 235, 253, 271, 289, 307, 325, 343, 361, 379, 397, 415, 433, 451, 469, 487, 505, 523, 541, 559, 577, 595, 613, 631, 649, 667, 685, 703, 721, 739, 757, 775, 793, 811, 829, 847, 865, 883, 901, 919, 937, 955 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Digital root of a(n) is 1. - Alexander R. Povolotsky, Jun 13 2012 These numbers can be written as the sum of four integer cubes as a(n) = (2*n + 14)^3 + (3*n + 30)^3 + (- 2*n - 23)^3 + (- 3*n - 26)^3. - Arkadiusz Wesolowski, Aug 15 2013 LINKS G. C. Greubel, Table of n, a(n) for n = 0..2500 Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA a(n) = 18*n + 1, n >= 0. a(n) = a(n-1) + 18 (with a(0)=1). - Vincenzo Librandi, Dec 27 2010 From G. C. Greubel, Feb 17 2017: (Start) G.f.: (1 + 17*x)/(1-x)^2. E.g.f.: (1 + 18*x)*exp(x). a(n) = 2*a(n-1) - a(n-2). (End) MAPLE seq(18*n+1, n=0..60); # G. C. Greubel, Sep 18 2019 MATHEMATICA Range[1, 1000, 18] (* Vladimir Joseph Stephan Orlovsky, Jun 01 2011 *) LinearRecurrence[{2, -1}, {1, 19}, 60] (* G. C. Greubel, Feb 17 2017 *) PROG (PARI) vector(60, n, 18*n-17) \\ G. C. Greubel, Feb 17 2017 (Magma) [18*n +1: n in [0..60]]; // G. C. Greubel, Sep 18 2019 (Sage) [18*n+1 for n in (0..60)] # G. C. Greubel, Sep 18 2019 (GAP) List([0..60], n-> 18*n+1); # G. C. Greubel, Sep 18 2019 CROSSREFS Cf. A005408, A016813, A016921, A017281, A017533, A128470, A158057, A161700, A161709, A161714, A287326 (fourth column). Sequence in context: A109639 A225863 A332884 * A131600 A175546 A162471 Adjacent sequences: A161702 A161703 A161704 * A161706 A161707 A161708 KEYWORD nonn,easy AUTHOR Reinhard Zumkeller, Jun 17 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 15:29 EDT 2023. Contains 363137 sequences. (Running on oeis4.)