login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218340
Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(23) listed in ascending order.
4
1, 2, 11, 22, 3, 4, 6, 8, 12, 16, 24, 33, 44, 48, 66, 88, 132, 176, 264, 528, 7, 14, 77, 79, 154, 158, 553, 869, 1106, 1738, 6083, 12166, 5, 10, 15, 20, 30, 32, 40, 53, 55, 60, 80, 96, 106, 110, 120, 159, 160, 165, 212, 220, 240, 265, 318, 330, 352, 424, 440
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Irreducible Polynomial
Eric Weisstein's World of Mathematics, Polynomial Order
FORMULA
T(n,k) = k-th smallest element of M(n) = {d : d|(23^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}.
EXAMPLE
Triangle begins:
1, 2, 11, 22;
3, 4, 6, 8, 12, 16, 24, 33, 44, ...
7, 14, 77, 79, 154, 158, 553, 869, 1106, ...
5, 10, 15, 20, 30, 32, 40, 53, 55, ...
292561, 585122, 3218171, 6436342;
...
MAPLE
with(numtheory):
M:= proc(n) M(n):= divisors(23^n-1) minus U(n-1) end:
U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
T:= n-> sort([M(n)[]])[]:
seq(T(n), n=1..5);
MATHEMATICA
M[n_] := M[n] = Divisors[23^n-1] ~Complement~ U[n-1];
U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n-1]];
T[n_] := Sort[M[n]];
Table[T[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Feb 12 2023, after Alois P. Heinz *)
CROSSREFS
Column k=9 of A212737.
Column k=1 gives: A218363.
Row lengths are A212957(n,23).
Sequence in context: A085652 A111090 A111081 * A018491 A031010 A161708
KEYWORD
nonn,tabf,look
AUTHOR
Alois P. Heinz, Oct 26 2012
STATUS
approved