login
A212957
A(n,k) is the number of moduli m such that the multiplicative order of k mod m equals n; square array A(n,k), n>=1, k>=1, read by antidiagonals.
23
0, 1, 0, 2, 1, 0, 2, 2, 1, 0, 3, 2, 2, 2, 0, 2, 5, 4, 6, 1, 0, 4, 2, 3, 4, 4, 3, 0, 2, 6, 2, 12, 6, 10, 1, 0, 4, 4, 8, 4, 9, 16, 2, 4, 0, 3, 6, 2, 26, 4, 37, 6, 14, 2, 0, 4, 3, 12, 18, 4, 10, 3, 8, 4, 5, 0, 2, 12, 5, 14, 6, 42, 2, 28, 26, 16, 3, 0
OFFSET
1,4
LINKS
Alois P. Heinz, Antidiagonals n = 1..60
FORMULA
A(n,k) = |{m : multiplicative order of k mod m = n}|.
A(n,k) = Sum_{d|n} mu(n/d)*tau(k^d-1), mu = A008683, tau = A000005.
EXAMPLE
A(4,3) = 6: 3^4 = 81 == 1 (mod m) for m in {5,10,16,20,40,80}.
Square array A(n,k) begins:
0, 1, 2, 2, 3, 2, 4, 2, ...
0, 1, 2, 2, 5, 2, 6, 4, ...
0, 1, 2, 4, 3, 2, 8, 2, ...
0, 2, 6, 4, 12, 4, 26, 18, ...
0, 1, 4, 6, 9, 4, 4, 6, ...
0, 3, 10, 16, 37, 10, 42, 24, ...
0, 1, 2, 6, 3, 2, 12, 10, ...
0, 4, 14, 8, 28, 8, 48, 72, ...
MAPLE
with(numtheory):
A:= (n, k)-> add(mobius(n/d)*tau(k^d-1), d=divisors(n)):
seq(seq(A(n, 1+d-n), n=1..d), d=1..15);
MATHEMATICA
a[n_, k_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, k^d - 1], {d, Divisors[n]}]; a[1, 1] = 0; Table[ a[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)
PROG
(PARI) a(n, k) = if(k == 1, 0, sumdiv(n, d, moebius(n/d) * numdiv(k^d-1))); \\ Amiram Eldar, Jan 25 2025
CROSSREFS
Main diagonal gives A252760.
Sequence in context: A328312 A289281 A374996 * A035393 A068913 A128306
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jun 01 2012
STATUS
approved