login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059907
a(n) = |{m : multiplicative order of n mod m = 2}|.
6
0, 1, 2, 2, 5, 2, 6, 4, 6, 3, 12, 2, 10, 6, 8, 4, 13, 2, 18, 6, 10, 4, 16, 4, 12, 9, 12, 4, 26, 2, 20, 6, 8, 12, 20, 4, 15, 6, 16, 4, 32, 2, 24, 10, 10, 6, 20, 4, 26, 9, 18, 4, 26, 6, 32, 12, 12, 4, 28, 2, 20, 10, 12, 18, 25, 4, 24, 6, 26, 4, 52, 2, 18, 10, 12, 18, 26, 4, 40, 8, 14, 5, 28
OFFSET
1,3
COMMENTS
The multiplicative order of a mod m, GCD(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).
LINKS
FORMULA
a(n) = tau(n^2-1)-tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.
EXAMPLE
a(2) = |{3}| = 1, a(3) = |{4,8}| = 2, a(4) = |{5,15}| = 2, a(5) = |{3,6,8,12,24}| = 5, a(6) = |{7,35}| = 2, a(7) = |{4,8,12,16,24,48}| = 6,...
MAPLE
with(numtheory):f := n->tau(n^2-1)-tau(n-1):for n from 1 to 100 do printf(`%d, `, f(n)) od:
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 08 2001
STATUS
approved