login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A359101
a(n) = phi(5 * n)/4.
5
1, 1, 2, 2, 5, 2, 6, 4, 6, 5, 10, 4, 12, 6, 10, 8, 16, 6, 18, 10, 12, 10, 22, 8, 25, 12, 18, 12, 28, 10, 30, 16, 20, 16, 30, 12, 36, 18, 24, 20, 40, 12, 42, 20, 30, 22, 46, 16, 42, 25, 32, 24, 52, 18, 50, 24, 36, 28, 58, 20, 60, 30, 36, 32, 60, 20, 66, 32, 44, 30, 70, 24, 72, 36, 50, 36, 60, 24, 78
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Moebius Transform.
Eric Weisstein's World of Mathematics, Totient Function.
FORMULA
G.f.: -Sum_{k>=1} mu(5 * k) * x^k / (1 - x^k)^2, where mu() is the Moebius function (A008683).
From Amiram Eldar, Dec 17 2022: (Start)
Multiplicative with a(5^e) = 5^e, and a(p^e) = (p-1)*p^(e-1) if p != 5.
Dirichlet g.f.: zeta(s-1)/(zeta(s)*(1-1/5^s)).
Sum_{k=1..n} a(k) ~ (25/(8*Pi^2)) * n^2. (End)
MATHEMATICA
Array[EulerPhi[5 #]/4 &, 79] (* Michael De Vlieger, Dec 16 2022 *)
PROG
(PARI) a(n) = eulerphi(5*n)/4;
(PARI) my(N=80, x='x+O('x^N)); Vec(-sum(k=1, N, moebius(5*k)*x^k/(1-x^k)^2))
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Seiichi Manyama, Dec 16 2022
STATUS
approved