login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359100
a(n) = (1/4) * Sum_{d|n} phi(5 * d).
7
1, 2, 3, 4, 6, 6, 7, 8, 9, 12, 11, 12, 13, 14, 18, 16, 17, 18, 19, 24, 21, 22, 23, 24, 31, 26, 27, 28, 29, 36, 31, 32, 33, 34, 42, 36, 37, 38, 39, 48, 41, 42, 43, 44, 54, 46, 47, 48, 49, 62, 51, 52, 53, 54, 66, 56, 57, 58, 59, 72, 61, 62, 63, 64, 78, 66, 67, 68, 69, 84, 71, 72, 73, 74, 93, 76
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Totient Function.
FORMULA
G.f.: Sum_{k>=1} phi(5 * k) * x^k / (4 * (1 - x^k)).
G.f.: Sum_{k>=0} x^(5^k) / (1 - x^(5^k))^2.
From Amiram Eldar, Dec 17 2022: (Start)
Multiplicative with a(5^e) = (5^(e+1)-1)/4, and a(p^e) = p if p != 5.
Dirichlet g.f.: zeta(s-1)*(1+1/(5^s-1)).
Sum_{k=1..n} a(k) ~ (25/48) * n^2. (End)
From Seiichi Manyama, Jun 04 2024: (Start)
G.f. A(x) satisfies A(x) = x/(1 - x)^2 + A(x^5).
If n == 0 (mod 5), a(n) = n + a(n/5) otherwise a(n) = n. (End)
MATHEMATICA
Array[DivisorSum[#, EulerPhi[5 #] &]/4 &, 76] (* Michael De Vlieger, Dec 16 2022 *)
f[p_, e_] := If[p == 5, (5^(e + 1) - 1)/4, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 17 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(5*d))/4;
(PARI) my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(5*k)*x^k/(1-x^k))/4)
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, Dec 16 2022
STATUS
approved