login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (1/4) * Sum_{d|n} phi(5 * d).
7

%I #27 Jun 04 2024 09:20:09

%S 1,2,3,4,6,6,7,8,9,12,11,12,13,14,18,16,17,18,19,24,21,22,23,24,31,26,

%T 27,28,29,36,31,32,33,34,42,36,37,38,39,48,41,42,43,44,54,46,47,48,49,

%U 62,51,52,53,54,66,56,57,58,59,72,61,62,63,64,78,66,67,68,69,84,71,72,73,74,93,76

%N a(n) = (1/4) * Sum_{d|n} phi(5 * d).

%H Michael De Vlieger, <a href="/A359100/b359100.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotientFunction.html">Totient Function</a>.

%F G.f.: Sum_{k>=1} phi(5 * k) * x^k / (4 * (1 - x^k)).

%F G.f.: Sum_{k>=0} x^(5^k) / (1 - x^(5^k))^2.

%F From _Amiram Eldar_, Dec 17 2022: (Start)

%F Multiplicative with a(5^e) = (5^(e+1)-1)/4, and a(p^e) = p if p != 5.

%F Dirichlet g.f.: zeta(s-1)*(1+1/(5^s-1)).

%F Sum_{k=1..n} a(k) ~ (25/48) * n^2. (End)

%F From _Seiichi Manyama_, Jun 04 2024: (Start)

%F G.f. A(x) satisfies A(x) = x/(1 - x)^2 + A(x^5).

%F If n == 0 (mod 5), a(n) = n + a(n/5) otherwise a(n) = n. (End)

%t Array[DivisorSum[#, EulerPhi[5 #] &]/4 &, 76] (* _Michael De Vlieger_, Dec 16 2022 *)

%t f[p_, e_] := If[p == 5, (5^(e + 1) - 1)/4, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 17 2022 *)

%o (PARI) a(n) = sumdiv(n, d, eulerphi(5*d))/4;

%o (PARI) my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(5*k)*x^k/(1-x^k))/4)

%Y Cf. A129527, A327625, A359099, A373188.

%Y Cf. A000010, A055457.

%K nonn,mult

%O 1,2

%A _Seiichi Manyama_, Dec 16 2022