%I #29 Jan 26 2025 02:17:33
%S 0,1,0,2,1,0,2,2,1,0,3,2,2,2,0,2,5,4,6,1,0,4,2,3,4,4,3,0,2,6,2,12,6,
%T 10,1,0,4,4,8,4,9,16,2,4,0,3,6,2,26,4,37,6,14,2,0,4,3,12,18,4,10,3,8,
%U 4,5,0,2,12,5,14,6,42,2,28,26,16,3,0
%N A(n,k) is the number of moduli m such that the multiplicative order of k mod m equals n; square array A(n,k), n>=1, k>=1, read by antidiagonals.
%H Alois P. Heinz, <a href="/A212957/b212957.txt">Antidiagonals n = 1..60</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiplicative_order">Multiplicative order</a>.
%F A(n,k) = |{m : multiplicative order of k mod m = n}|.
%F A(n,k) = Sum_{d|n} mu(n/d)*tau(k^d-1), mu = A008683, tau = A000005.
%e A(4,3) = 6: 3^4 = 81 == 1 (mod m) for m in {5,10,16,20,40,80}.
%e Square array A(n,k) begins:
%e 0, 1, 2, 2, 3, 2, 4, 2, ...
%e 0, 1, 2, 2, 5, 2, 6, 4, ...
%e 0, 1, 2, 4, 3, 2, 8, 2, ...
%e 0, 2, 6, 4, 12, 4, 26, 18, ...
%e 0, 1, 4, 6, 9, 4, 4, 6, ...
%e 0, 3, 10, 16, 37, 10, 42, 24, ...
%e 0, 1, 2, 6, 3, 2, 12, 10, ...
%e 0, 4, 14, 8, 28, 8, 48, 72, ...
%p with(numtheory):
%p A:= (n, k)-> add(mobius(n/d)*tau(k^d-1), d=divisors(n)):
%p seq(seq(A(n, 1+d-n), n=1..d), d=1..15);
%t a[n_, k_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, k^d - 1], {d, Divisors[n]}]; a[1, 1] = 0; Table[ a[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Dec 12 2012 *)
%o (PARI) a(n, k) = if(k == 1, 0, sumdiv(n, d, moebius(n/d) * numdiv(k^d-1))); \\ _Amiram Eldar_, Jan 25 2025
%Y Columns k=1-10 give: A000004, A059499, A059885, A059886, A059887, A059888, A059889, A059890, A059891, A059892.
%Y Rows n=1-10 give: A000005, A059907, A059908, A059909, A059910, A059911, A218256, A218257, A218258, A218259.
%Y Main diagonal gives A252760.
%Y Cf. A000005, A008683.
%K nonn,tabl
%O 1,4
%A _Alois P. Heinz_, Jun 01 2012