login
A218363
Minimal order of degree-n irreducible polynomials over GF(23).
4
1, 3, 7, 5, 292561, 9, 29, 64, 19, 31, 121, 35, 47691619, 71, 2047927, 17, 103, 27, 2129, 25, 43, 363, 461, 448, 6551, 143074857, 4591, 145, 233, 151, 40888990028603, 193, 67, 239, 8484269, 73, 1925658337781, 6387, 333841333, 1600, 83, 129, 173, 605, 5558659
OFFSET
1,2
COMMENTS
a(n) < 23^n.
LINKS
Eric Weisstein's World of Mathematics, Irreducible Polynomial
Eric Weisstein's World of Mathematics, Polynomial Order
FORMULA
a(n) = min(M(n)) with M(n) = {d : d|(23^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}.
a(n) = A218340(n,1) = A213224(n,9).
MAPLE
with(numtheory):
M:= proc(n) M(n):= divisors(23^n-1) minus U(n-1) end:
U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
a:= n-> min(M(n)[]):
seq(a(n), n=1..30);
MATHEMATICA
M[n_] := M[n] = Divisors[23^n - 1]~Complement~U[n - 1];
U[n_] := U[n] = If[n == 0, {}, M[n]~Union~U[n - 1]];
a[n_] := Min[M[n]];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 45}] (* Jean-François Alcover, Oct 24 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A277207 A001663 A085052 * A200611 A016666 A318352
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 27 2012
STATUS
approved