login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218363
Minimal order of degree-n irreducible polynomials over GF(23).
4
1, 3, 7, 5, 292561, 9, 29, 64, 19, 31, 121, 35, 47691619, 71, 2047927, 17, 103, 27, 2129, 25, 43, 363, 461, 448, 6551, 143074857, 4591, 145, 233, 151, 40888990028603, 193, 67, 239, 8484269, 73, 1925658337781, 6387, 333841333, 1600, 83, 129, 173, 605, 5558659
OFFSET
1,2
COMMENTS
a(n) < 23^n.
LINKS
Eric Weisstein's World of Mathematics, Irreducible Polynomial
Eric Weisstein's World of Mathematics, Polynomial Order
FORMULA
a(n) = min(M(n)) with M(n) = {d : d|(23^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}.
a(n) = A218340(n,1) = A213224(n,9).
MAPLE
with(numtheory):
M:= proc(n) M(n):= divisors(23^n-1) minus U(n-1) end:
U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
a:= n-> min(M(n)[]):
seq(a(n), n=1..30);
MATHEMATICA
M[n_] := M[n] = Divisors[23^n - 1]~Complement~U[n - 1];
U[n_] := U[n] = If[n == 0, {}, M[n]~Union~U[n - 1]];
a[n_] := Min[M[n]];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 45}] (* Jean-François Alcover, Oct 24 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A277207 A001663 A085052 * A200611 A016666 A318352
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 27 2012
STATUS
approved