login
A212737
Square array A(n,k), n>=1, k>=1, read by antidiagonals, where column k lists the orders of degree-d irreducible polynomials over GF(prime(k)); listing order for each column: ascending d, ascending value.
12
1, 1, 3, 1, 2, 7, 1, 2, 4, 5, 1, 2, 4, 8, 15, 1, 2, 3, 3, 13, 31, 1, 2, 5, 6, 6, 26, 9, 1, 2, 3, 10, 4, 8, 5, 21, 1, 2, 4, 4, 3, 8, 12, 10, 63, 1, 2, 3, 8, 6, 4, 12, 24, 16, 127, 1, 2, 11, 6, 16, 12, 6, 16, 31, 20, 17, 1, 2, 4, 22, 9, 3, 7, 8, 24, 62, 40, 51
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Irreducible Polynomial
Eric Weisstein's World of Mathematics, Polynomial Order
FORMULA
Formulae for the column sequences are given in A059912, A212906, ... .
EXAMPLE
For k=1 the irreducible polynomials over GF(prime(1)) = GF(2) of degree 1-4 are: x, 1+x; 1+x+x^2; 1+x+x^3, 1+x^2+x^3; 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. The orders of these polynomials p (i.e., the smallest integer e for which p divides x^e+1) are 1; 3; 7; 5, 15. (Example: (1+x^3+x^4) * (1+x^3+x^4+x^6+x^8+x^9+x^10+x^11) == x^15+1 (mod 2)). Thus column k=1 begins: 1, 3, 7, 5, 15, ... .
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
7, 4, 4, 3, 5, 3, 4, 3, 11, 4, ...
5, 8, 3, 6, 10, 4, 8, 6, 22, 7, ...
15, 13, 6, 4, 3, 6, 16, 9, 3, 14, ...
31, 26, 8, 8, 4, 12, 3, 18, 4, 28, ...
9, 5, 12, 12, 6, 7, 6, 4, 6, 3, ...
21, 10, 24, 16, 8, 8, 9, 5, 8, 5, ...
63, 16, 31, 24, 12, 14, 12, 8, 12, 6, ...
127, 20, 62, 48, 15, 21, 18, 10, 16, 8, ...
MAPLE
with(numtheory):
M:= proc(n, i) M(n, i):= divisors(ithprime(i)^n-1) minus U(n-1, i) end:
U:= proc(n, i) U(n, i):= `if`(n=0, {}, M(n, i) union U(n-1, i)) end:
b:= proc(n, i) b(n, i):= sort([M(n, i)[]])[] end:
A:= proc() local l; l:= proc() [] end;
proc(n, k) local t;
if nops(l(k))<n then l(k):= [];
for t while nops(l(k))<n
do l(k):= [l(k)[], b(t, k)] od
fi; l(k)[n]
end:
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..15);
MATHEMATICA
m[n_, i_] := Divisors[Prime[i]^n-1] ~Complement~ u[n-1, i]; u[n_, i_] := u[n, i] = If[n == 0, {}, m[n, i] ~Union~ u[n-1, i]]; b[n_, i_] := Sort[m[n, i]]; a = Module[{l}, l[_] = {}; Function[{n, k}, Module[{t}, If [Length[l[k]] < n, l[k] = {}; For[t = 1, Length[l[k]] < n, t++, l[k] = Join[l[k], b[t, k]]]]; l[k][[n]]]]]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 15}] // Flatten (* Jean-François Alcover, Dec 20 2013, translated from Maple *)
CROSSREFS
KEYWORD
nonn,look,tabl,changed
AUTHOR
Alois P. Heinz, Jun 02 2012
STATUS
approved