The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212737 Square array A(n,k), n>=1, k>=1, read by antidiagonals, where column k lists the orders of degree-d irreducible polynomials over GF(prime(k)); listing order for each column: ascending d, ascending value. 12
 1, 1, 3, 1, 2, 7, 1, 2, 4, 5, 1, 2, 4, 8, 15, 1, 2, 3, 3, 13, 31, 1, 2, 5, 6, 6, 26, 9, 1, 2, 3, 10, 4, 8, 5, 21, 1, 2, 4, 4, 3, 8, 12, 10, 63, 1, 2, 3, 8, 6, 4, 12, 24, 16, 127, 1, 2, 11, 6, 16, 12, 6, 16, 31, 20, 17, 1, 2, 4, 22, 9, 3, 7, 8, 24, 62, 40, 51 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Alois P. Heinz, Antidiagonals n = 1..141, flattened Eric Weisstein's World of Mathematics, Irreducible Polynomial Eric Weisstein's World of Mathematics, Polynomial Order FORMULA Formulae for the column sequences are given in A059912, A212906, ... . EXAMPLE For k=1 the irreducible polynomials over GF(prime(1)) = GF(2) of degree 1-4 are: x, 1+x; 1+x+x^2; 1+x+x^3, 1+x^2+x^3; 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. The orders of these polynomials p (i.e., the smallest integer e for which p divides x^e+1) are 1; 3; 7; 5, 15. (Example: (1+x^3+x^4) * (1+x^3+x^4+x^6+x^8+x^9+x^10+x^11) == x^15+1 (mod 2)). Thus column k=1 begins: 1, 3, 7, 5, 15, ... . Square array A(n,k) begins:     1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...     3,  2,  2,  2,  2,  2,  2,  2,  2,  2, ...     7,  4,  4,  3,  5,  3,  4,  3, 11,  4, ...     5,  8,  3,  6, 10,  4,  8,  6, 22,  7, ...    15, 13,  6,  4,  3,  6, 16,  9,  3, 14, ...    31, 26,  8,  8,  4, 12,  3, 18,  4, 28, ...     9,  5, 12, 12,  6,  7,  6,  4,  6,  3, ...    21, 10, 24, 16,  8,  8,  9,  5,  8,  5, ...    63, 16, 31, 24, 12, 14, 12,  8, 12,  6, ...   127, 20, 62, 48, 15, 21, 18, 10, 16,  8, ... MAPLE with(numtheory): M:= proc(n, i) M(n, i):= divisors(ithprime(i)^n-1) minus U(n-1, i) end: U:= proc(n, i) U(n, i):= `if`(n=0, {}, M(n, i) union U(n-1, i)) end: b:= proc(n, i) b(n, i):= sort([M(n, i)[]])[] end: A:= proc() local l; l:= proc() [] end;       proc(n, k) local t;         if nops(l(k))

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 20:56 EST 2020. Contains 338920 sequences. (Running on oeis4.)