login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212737 Square array A(n,k), n>=1, k>=1, read by antidiagonals, where column k lists the orders of degree-d irreducible polynomials over GF(prime(k)); listing order for each column: ascending d, ascending value. 12
1, 1, 3, 1, 2, 7, 1, 2, 4, 5, 1, 2, 4, 8, 15, 1, 2, 3, 3, 13, 31, 1, 2, 5, 6, 6, 26, 9, 1, 2, 3, 10, 4, 8, 5, 21, 1, 2, 4, 4, 3, 8, 12, 10, 63, 1, 2, 3, 8, 6, 4, 12, 24, 16, 127, 1, 2, 11, 6, 16, 12, 6, 16, 31, 20, 17, 1, 2, 4, 22, 9, 3, 7, 8, 24, 62, 40, 51 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Alois P. Heinz, Antidiagonals n = 1..141, flattened

Eric Weisstein's World of Mathematics, Irreducible Polynomial

Eric Weisstein's World of Mathematics, Polynomial Order

FORMULA

Formulae for the column sequences are given in A059912, A212906, ... .

EXAMPLE

For k=1 the irreducible polynomials over GF(prime(1)) = GF(2) of degree 1-4 are: x, 1+x; 1+x+x^2; 1+x+x^3, 1+x^2+x^3; 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. The orders of these polynomials p (i.e., the smallest integer e for which p divides x^e+1) are 1; 3; 7; 5, 15. (Example: (1+x^3+x^4) * (1+x^3+x^4+x^6+x^8+x^9+x^10+x^11) == x^15+1 (mod 2)). Thus column k=1 begins: 1, 3, 7, 5, 15, ... .

Square array A(n,k) begins:

    1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...

    3,  2,  2,  2,  2,  2,  2,  2,  2,  2, ...

    7,  4,  4,  3,  5,  3,  4,  3, 11,  4, ...

    5,  8,  3,  6, 10,  4,  8,  6, 22,  7, ...

   15, 13,  6,  4,  3,  6, 16,  9,  3, 14, ...

   31, 26,  8,  8,  4, 12,  3, 18,  4, 28, ...

    9,  5, 12, 12,  6,  7,  6,  4,  6,  3, ...

   21, 10, 24, 16,  8,  8,  9,  5,  8,  5, ...

   63, 16, 31, 24, 12, 14, 12,  8, 12,  6, ...

  127, 20, 62, 48, 15, 21, 18, 10, 16,  8, ...

MAPLE

with(numtheory):

M:= proc(n, i) M(n, i):= divisors(ithprime(i)^n-1) minus U(n-1, i) end:

U:= proc(n, i) U(n, i):= `if`(n=0, {}, M(n, i) union U(n-1, i)) end:

b:= proc(n, i) b(n, i):= sort([M(n, i)[]])[] end:

A:= proc() local l; l:= proc() [] end;

      proc(n, k) local t;

        if nops(l(k))<n then l(k):= [];

          for t while nops(l(k))<n

            do l(k):= [l(k)[], b(t, k)] od

        fi; l(k)[n]

      end:

    end():

seq(seq(A(n, 1+d-n), n=1..d), d=1..15);

MATHEMATICA

m[n_, i_] := Divisors[Prime[i]^n-1] ~Complement~ u[n-1, i]; u[n_, i_] := u[n, i] = If[n == 0, {}, m[n, i] ~Union~ u[n-1, i]]; b[n_, i_] := Sort[m[n, i]]; a = Module[{l}, l[_] = {}; Function[{n, k}, Module[{t}, If [Length[l[k]] < n, l[k] = {}; For[t = 1, Length[l[k]] < n, t++, l[k] = Join[l[k], b[t, k]]]]; l[k][[n]]]]]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 15}] // Flatten (* Jean-Fran├žois Alcover, Dec 20 2013, translated from Maple *)

CROSSREFS

Columns k=1-10 give: A059912, A212906, A212485, A212486, A218336, A218337, A218338, A218339, A218340, A218341.

Sequence in context: A024743 A024963 A283435 * A307078 A134348 A331789

Adjacent sequences:  A212734 A212735 A212736 * A212738 A212739 A212740

KEYWORD

nonn,look,tabl

AUTHOR

Alois P. Heinz, Jun 02 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 20:56 EST 2020. Contains 338920 sequences. (Running on oeis4.)