login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307078
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k-x^k).
4
1, 1, 3, 1, 2, 7, 1, 2, 4, 15, 1, 2, 3, 8, 31, 1, 2, 3, 5, 16, 63, 1, 2, 3, 4, 10, 32, 127, 1, 2, 3, 4, 6, 21, 64, 255, 1, 2, 3, 4, 5, 12, 43, 128, 511, 1, 2, 3, 4, 5, 7, 28, 86, 256, 1023, 1, 2, 3, 4, 5, 6, 14, 64, 171, 512, 2047, 1, 2, 3, 4, 5, 6, 8, 36, 136, 341, 1024, 4095
OFFSET
0,3
LINKS
FORMULA
A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+1,k*j+1).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i,k*j) * binomial(n-i,k*j).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 2, 2, 2, 2, 2, 2, 2, 2, ...
7, 4, 3, 3, 3, 3, 3, 3, 3, ...
15, 8, 5, 4, 4, 4, 4, 4, 4, ...
31, 16, 10, 6, 5, 5, 5, 5, 5, ...
63, 32, 21, 12, 7, 6, 6, 6, 6, ...
127, 64, 43, 28, 14, 8, 7, 7, 7, ...
255, 128, 86, 64, 36, 16, 9, 8, 8, ...
511, 256, 171, 136, 93, 45, 18, 10, 9, ...
MATHEMATICA
T[n_, k_] := Sum[Binomial[n+1, k*j+1], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
CROSSREFS
Columns 1-6 give A126646, A000079, A024494(n+1), A038504(n+1), A133476(n+1), A119336.
Sequence in context: A024963 A283435 A212737 * A134348 A331789 A308001
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Mar 22 2019
STATUS
approved